Bioremediation is degradation of pollutants using biological mechanisms. Rapid industrialization and agricultural development has caused several pollutants and contaminants to percolate the environment in alarming proportions. To overcome the critical situation microbes play a vital role in eradication of pollutants. Release of toxins from pollutants enhances metabolic activities of a few stringent microorganisms, leading to decomposition of waste. Diverse population of fungi and bacteria play a key role in this process. Combined action of specific enzyme production and genetic regulation guides the metabolic removal of toxicants. Bioremediation is degradation of toxic compounds by plants or microbes, forming non-toxic products. In this process of decontamination, plants and microbes improve the nutritional and structural quality of soil by recolonizing it, enhancing potential for agricultural and industrial development. Bioaugmentation is a process employed for regulating microbial communities by introducing specific organisms to a contaminated site, in accordance with the specific properties of the contaminant and site. Bioaugmenation is related with ‘omics’ research, which helps in comprehending the metabolic approaches employed for degradation of toxins. The ‘omic’ studies like transcriptomics, genomics, proteomics and metabolomics not only disclose whether a certain organism can degrade the contaminant, but they also explain the process and products of reactions involved in decontamination. This leads to better understanding of protein and molecular mechanisms, which are significant for improving effectiveness and reducing cost. Furthermore, synergistic action of different microbes at the site of contamination, can be studied with the aid of ‘omics’, which yields more efficient, collaborative groups of microorganisms and more effective decontamination of toxicants. Current review analyses various bioremediation techniques, microorganisms participating and the genetic and molecular mechanisms involved.

1.
Kumar
,
V.
,
Shahi
,
SK.
,
Singh
S.
Bioremediation: an eco-sustainable approach for restoration of contaminated sites.
InMicrobial bioprospecting for sustainable development
2018
(pp.
115
136
).
Springer
,
Singapore
.
2.
Das
,
A.
,
Osborne
JW
. Bioremediation of heavy metals.
InNanotechnology, food security and water treatment
2018
.
Springer
,
Cham
.
277
311
3.
Ostrem Loss
EM
,
Yu
JH
.
Bioremediation and microbial metabolism of benzo (a) pyrene
.
Molecular microbiology.
2018
Aug;
109
(
4
):
433
44
.
4.
Kour
,
D.
,
Rana
,
KL.
,
Yadav
,
N.
,
Yadav
,
AN.
,
Singh
,
J.
,
Rastegari
,
AA.
,
Saxena
,
AK
. Agriculturally and industrially important fungi: current developments and potential biotechnological applications.
InRecent advancement in white biotechnology through fungi
2019
(pp.
1
64
).
Springer
,
Cham
.
5.
Yadav
,
AN.
,
Kumar
,
R.
,
Kumar
,
S.
,
Kumar
,
V.
,
Sugitha
,
TC.
,
Singh
,
B.
,
Chauahan
,
VS.
,
Dhaliwal
,
HS.
,
Saxena AK.
Beneficial
microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health
.
Journal of Applied Biology and Biotechnology.
2017
Nov 9;
5
(
6
):
4
7
.
6.
Ite
,
A.E.
,
Ibok
,
U.J.
Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils
.
International Journal of Environmental Bioremediation & Biodegradation.
2019
;
7
(
1
):
1
9
.
7.
Shukla
,
L.
,
Suman
,
A.
,
Verma
,
P.
,
Yadav
,
AN.
,
Saxena
AK
.
Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment
.
Journal of Applied Biology and Biotechnology.
2016
Apr 21;
4
(
2
):
0
3
.
8.
Krzmarzick
,
MJ.
,
Taylor
,
DK.
,
Fu
,
X.
,
McCutchan
AL
.
Diversity and niche of archaea in bioremediation
.
Archaea.
2018
Jan
1
;2018.
9.
Saxena
,
AK.
,
Yadav
,
AN.
,
Rajawat
,
M.
,
Kaushik
,
R.
,
Kumar
,
R.
,
Kumar
M.
Microbial diversity of extreme regions: An unseen heritage and wealth
.
Indian J Plant Genet Resour
(
2016
)
29
:
246
248
10.
Yadav
,
AN.
,
Rastegari
,
AA.
,
Yadav
N.
Microbiomes of extreme environments
.
Boca Raton
,
USA
:
CRC Press, Taylor and Francis Group
;
2020
.
11.
Harms
,
H.
,
Schlosser
,
D.
, and
Wick
,
L.Y.
Untapped potential: exploiting fungi in bioremediation of hazardous chemicals
.
Nat Rev Microbiol
(
2011
)
9
:
177
192
.
12.
El Amrani
A.
,
Dumas
,
AS.
,
Wick
,
LY.
,
Yergeau
,
E.
,
Berthomé
R.
Omics” insights into PAH degradation toward improved green remediation biotechnologies
.
Environmental science & technology.
2015
Oct 6;
49
(
19
):
11281
91
.
13.
Kensa
VM
.
Bioremediation-an overview
.
I Control Pollution.
2011
;
27
(
2
):
161
8
.
14.
United States Environmental Protection Agency
. (
2001
)
Use of bioremediation at superfund sites.
15.
Mäkelä
,
MR.
,
Donofrio
,
N.
,
de Vries
RP
.
Plant biomass degradation by fungi
.
Fungal Genetics and Biology.
2014
Nov 1;
72
:
2
9
.
16.
Ferguson
,
BA.
,
Dreisbach
,
TA.
,
Parks
,
CG.
,
Filip
,
GM.
,
Schmitt
CL
.
Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon
.
Canadian Journal of Forest Research.
2003
Apr 1;
33
(
4
):
612
23
.
17.
Lew
RR
.
How does a hypha grow? The biophysics of pressurized growth in fungi
.
Nature Reviews Microbiology.
2011
Jul;
9
(
7
):
509
18
.
18.
Deng
,
Y.
,
Sun
,
M.
,
Shaevitz
JW
.
Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells
.
Physical review letters.
2011
Oct 6;
107
(
15
):
158101
.
19.
Bornyasz
,
MA.
,
Graham
,
RC.
,
Allen
MF
.
Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants
.
Geoderma.
2005
May 1;
126
(
1-2
):
141
60
.
20.
Ochman
,
H.
, and
Caro-Quintero
,
A.
(
2016
) Genome size and structure, bacterial. In
Encyclopedia of Evolutionary Biology
.
Kliman
,
R.M.
(ed).
Oxford
:
Academic Press
, pp.
179
185
.
21.
Norman
,
A.
,
Hansen
,
LH.
,
Sørensen
SJ
.
Conjugative plasmids: vessels of the communal gene pool
.
Philosophical Transactions of the Royal Society B: Biological Sciences.
2009
Aug 12;
364
(
1527
):
2275
89
.
22.
Carbajosa
,
G.
,
Cases
I.
Transcriptional networks that regulate hydrocarbon biodegradation
.
InHandbook of hydrocarbon and lipid microbiology
2010
.
23.
Cases
,
I.
,
De Lorenzo
V.
Promoters in the environment: transcriptional regulation in its natural context
.
Nature Reviews Microbiology.
2005
Feb;
3
(
2
):
105
18
.
24.
Mohanta
,
TK.
,
Bae
H.
The diversity of fungal genome
.
Biological procedures online.
2015
Dec;
17
(
1
):
1
9
.
25.
Singh Arora
D.
,
Kumar Sharma
R.
Ligninolytic fungal laccases and their biotechnological applications
.
Applied biochemistry and biotechnology.
2010
Mar;
160
(
6
):
1760
88
.
26.
Janusz
,
G.
,
Kucharzyk
,
KH.
,
Pawlik
,
A.
,
Staszczak
,
M.
,
Paszczynski
AJ
.
Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation
.
Enzyme and Microbial technology.
2013
Jan 10;
52
(
1
):
1
2
.
27.
Kelly
,
SL.
,
Kelly
DE
.
Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us?
.
Philosophical Transactions of the Royal Society B: Biological Sciences.
2013
Feb 19;
368
(
1612
):
20120476
.
28.
Kasai
,
N.
,
Ikushiro
,
SI.
,
Shinkyo
,
R.
,
Yasuda
,
K.
,
Hirosue
,
S.
,
Arisawa
,
A.
,
Ichinose
,
H.
,
Wariishi
,
H.
,
Sakaki
T.
Metabolism of mono-and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450
.
Applied microbiology and biotechnology.
2010
Mar;
86
(
2
):
773
80
.
29.
Nath
,
A.
,
Atkins
WM
.
A quantitative index of substrate promiscuity
.
Biochemistry.
2008
Jan 8;
47
(
1
):
157
66
.
30.
Syed
,
K.
,
Yadav
JS
.
P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium
.
Critical reviews in microbiology.
2012
Nov 1;
38
(
4
):
339
63
.
31.
Singh
,
J.
,
Singh
AV
.
Microbial strategies for enhanced phytoremediation of heavy metal-contaminated soils
.
InEnvironmental pollutants and their bioremediation approaches
2017
Jul 6 (pp.
257
272
). CRC Press.
32.
Kumar
,
A.
,
Chaturvedi
,
AK.
,
Yadav
,
K.
,
Arunkumar
,
KP.
,
Malyan
,
SK.
,
Raja
,
P.
,
Kumar
,
R.
,
Khan
,
SA.
,
Yadav
,
KK.
,
Rana
,
KL.
,
Kour
D.
Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects.
InRecent advancement in white biotechnology through fungi
2019
(pp.
437
461
).
Springer
,
Cham
.
33.
Zhang
,
W.
,
Jiang
,
F.
,
Ou
J.
Global pesticide consumption and pollution: with China as a focus
.
Proceedings of the international academy of ecology and environmental sciences.
2011
Aug 1;
1
(
2
):
125
.
34.
Kumar
,
V.
,
Singh
,
S.
,
Kashyap
,
N.
,
Singla
,
S.
,
Bhadrecha
,
P.
,
Kaur
,
P.
,
Datta
,
S.
,
Kalia
,
A.
,
Singh
J.
Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water
.
Orient J Chem.
2015
Jan 1;
31
(
1
):
357
61
.
35.
Dixit
,
R.
,
Malaviya
,
D.
,
Pandiyan
,
K.
,
Singh
,
UB.
,
Sahu
,
A.
,
Shukla
,
R.
,
Singh
,
BP.
,
Rai
,
JP.
,
Sharma
,
PK.
,
Lade
,
H.
,
Paul
D.
Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes
.
Sustainability.
2015
Feb;
7
(
2
):
2189
212
.
36.
Yang
,
T.
,
Chen
,
ML.
,
Wang
JH
.
Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance
.
TrAC Trends in Analytical Chemistry.
2015
Mar 1;
66
:
90
102
.
37.
Ramasamy
,
K.
,
Banu
SP
. Bioremediation of metals: microbial processes and techniques.
InEnvironmental bioremediation technologies
2007
(pp.
173
187
).
Springer
,
Berlin, Heidelberg
.
38.
Gavrilescu
M.
Removal of heavy metals from the environment by biosorption
.
Engineering in Life Sciences.
2004
Jun;
4
(
3
):
219
32
.
39.
Igiri
,
BE.
,
Okoduwa
,
SI.
,
Idoko
,
GO.
,
Akabuogu
,
EP.
,
Adeyi
,
AO.
,
Ejiogu
IK
.
Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review
.
Journal of toxicology.
2018
Oct;2018.
40.
Singh
,
S.
,
Kumar
,
V.
,
Datta
,
S.
,
Dhanjal
,
DS.
,
Sharma
,
K.
,
Samuel
,
J.
,
Singh
J.
Current advancement and future prospect of biosorbents for bioremediation
.
Science of the Total Environment.
2020
Mar 20;
709
:
135895
.
41.
Higham
,
DP.
,
Sadler
,
PJ.
,
Scawen
MD
.
Cadmium-binding proteins in Pseudomonas putida: pseudothioneins
.
Environmental Health Perspectives.
1986
Mar;
65
:
5
11
.
42.
Lima
,
AI.
,
Corticeiro
,
SC.
,
Figueira
EM
.
Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum
.
Enzyme and microbial technology.
2006
Aug 2;
39
(
4
):
763
9
.
43.
Xie
,
Y.
,
Fan
,
J.
,
Zhu
,
W.
,
Amombo
,
E.
,
Lou
,
Y.
,
Chen
,
L.
,
Fu
J.
Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation
.
Frontiers in plant science.
2016
May 31;
7
:
755
.
44.
Cha
,
JS.
,
Cooksey
DA
.
Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins
.
Proceedings of the National Academy of Sciences.
1991
Oct 15;
88
(
20
):
8915
9
.
45.
Thelwell
,
C.
,
Robinson
,
NJ.
,
Turner-Cavet
JS
.
An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter
.
Proceedings of the National Academy of Sciences.
1998
Sep 1;
95
(
18
):
10728
33
.
46.
Bruschi
,
M.
,
Goulhen
F.
New bioremediation technologies to remove heavy metals and radionuclides using Fe (III)-, sulfate-and sulfur-reducing bacteria.
InEnvironmental bioremediation technologies
2007
(pp.
35
55
).
Springer
,
Berlin, Heidelberg
.
47.
Luptakova
,
A.
,
Kusnierova
M.
Bioremediation of acid mine drainage contaminated by SRB
.
Hydrometallurgy.
2005
Apr 1;
77
(
1-2
):
97
102
.
48.
Sharma
,
PK.
,
Balkwill
,
DL.
,
Frenkel
,
A.
,
Vairavamurthy
MA
.
A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide
.
Applied and environmental Microbiology.
2000
Jul 1;
66
(
7
):
3083
7
.
49.
Wang
,
CL.
,
Ozuna
,
SC.
,
Clark
,
DS.
,
Keasling
JD
.
A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd2+ tolerance and precipitation
.
Biotechnology letters.
2002
Apr;
24
(
8
):
637
41
.
50.
Mire
,
CE.
,
Tourjee
,
JA.
,
O’Brien
,
WF.
,
Ramanujachary
,
KV.
,
Hecht
GB
.
Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions
.
Applied and Environmental Microbiology.
2004
Feb;
70
(
2
):
855
64
.
51.
El-Helow
,
ER.
,
Sabry
,
SA.
,
Amer
RM
.
Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations
.
Biometals.
2000
Dec;
13
(
4
):
273
80
.
52.
Taniguchi
,
J.
,
Hemmi
,
H.
,
Tanahashi
,
K.
,
Amano
,
N.
,
Nakayama
,
T.
,
Nishino
T.
Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. strain HZM-1
.
Applied microbiology and biotechnology.
2000
Oct;
54
(
4
):
581
8
.
53.
Pardo
,
R.
,
Herguedas
,
M.
,
Barrado
,
E.
,
Vega
M.
Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida
.
Analytical and bioanalytical chemistry.
2003
May;
376
(
1
):
26
32
.
54.
Green-Ruiz
C.
Mercury (II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary
.
Bioresource technology.
2006
Oct 1;
97
(
15
):
1907
11
.
55.
Teitzel
,
GM.
,
Parsek
MR
.
Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa
.
Applied and environmental microbiology.
2003
Apr;
69
(
4
):
2313
20
.
56.
Bisht
,
J.
,
Harsh
NS
.
Utilizing Aspergillus niger for bioremediation of tannery effluent
.
Octa Journal of Environmental Research.
2014
Mar 1;
2
(
1
).
57.
Barkay
,
T.
,
Miller
,
SM.
,
Summers
AO
.
Bacterial mercury resistance from atoms to ecosystems
.
FEMS microbiology reviews.
2003
Jun 1;
27
(
2-3
):
355
84
.
58.
Viti
,
C.
,
Pace
,
A.
,
Giovannetti
L.
Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity
.
Current microbiology.
2003
Jan;
46
(
1
):
0001
5
.
59.
Islas-García
,
A.
,
Vega-Loyo
,
L.
,
Aguilar-López
,
R.
,
Xoconostle-Cázares
,
B.
,
Rodríguez-Vázquez
R.
Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility
.
Journal of Environmental Science and Health, Part B.
2015
Feb 1;
50
(
2
):
99
108
.
60.
Widdel
,
F.
,
Rabus
R.
Anaerobic biodegradation of saturated and aromatic hydrocarbons
.
Current opinion in biotechnology.
2001
Jun 1;
12
(
3
):
259
76
.
61.
Kamada
,
F.
,
Abe
,
S.
,
Hiratsuka
,
N.
,
Wariishi
,
H.
,
Tanaka
H.
Mineralization of aromatic compounds by brown-rot basidiomycetes–mechanisms involved in initial attack on the aromatic ring
.
Microbiology.
2002
Jun 1;
148
(
6
):
1939
46
.
62.
Xu
,
R.
,
Obbard
JP
.
Biodegradation of polycyclic aromatic hydrocarbons in oil-contaminated beach sediments treated with nutrient amendments
.
Journal of environmental quality.
2004
May;
33
(
3
):
861
7
.
63.
Das
N
,
Chandran
P.
Microbial degradation of petroleum hydrocarbon contaminants: an overview
.
Biotechnology research international. 2011
;
2011
.
64.
Płaza
,
GA.
,
Łukasik
,
K.
,
Wypych
,
J.
,
Nałęcz-Jawecki
,
G.
,
Berry
,
C.
,
Brigmon
RL
.
Biodegradation of Crude Oil and Distillation Products by Biosurfactant-Producing Bacteria
.
Polish Journal of Environmental Studies.
2008
Jan 1;
17
(
1
).
65.
Chávez-Gómez
,
B.
,
Quintero
,
R.
,
Esparza-Garcıa
,
F.
,
Mesta-Howard
,
AM.
, de,
la
Serna
FZ.,
Hernández-Rodrıguez
,
CH.
,
Gillén
,
T.
,
Poggi-Varaldo
,
HM.
,
Barrera-Cortés
,
J.
,
Rodrı´guez-Vázquez
R.
Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith
.
Bioresource Technology.
2003
Sep 1;
89
(
2
):
177
83
.
66.
Thenmozhi
,
R.
,
Nagasathya
,
A.
,
Thajuddin
N.
Studies on biodegradation of used engine oil by consortium cultures
.
Advances in Environmental Biology.
2011
May 1:
1051
8
.
67.
Carmona
,
M.
,
Zamarro
,
MT.
,
Blázquez
,
B.
,
Durante-Rodríguez
,
G.
,
Juárez
,
JF.
,
Valderrama
,
JA.
,
Barragán
,
MJ.
,
García
,
JL.
,
Díaz
E.
Anaerobic catabolism of aromatic compounds: a genetic and genomic view
.
Microbiology and Molecular Biology Reviews.
2009
Mar;
73
(
1
):
71
133
.
68.
Salinero
,
KK.
,
Keller
,
K.
,
Feil
,
WS.
,
Feil
,
H.
,
Trong
,
S.
, Di,
Bartolo
G.
,
Lapidus
A.
Metabolic analysis of the soil microbe Dechloromonas aromatica str
.
RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC genomics.
2009
Dec;
10
(
1
):
1
23
.
69.
Kulkarni
,
SV.
,
Palande
,
AS.
,
Deshpande
MV
. Bioremediation of petroleum hydrocarbons in soils.
InMicroorganisms in environmental management
2012
(pp.
589
606
).
Springer
,
Dordrecht
.
70.
Gadd
GM
.
Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation
.
Mycological research.
2007
Jan 1;
111
(
1
):
3
49
.
71.
Karigar
,
CS.
,
Rao
SS
.
Role of microbial enzymes in the bioremediation of pollutants: a review
.
Enzyme research. 2011
;
2011
.
72.
Lei
,
AP.
,
Hu
,
ZL.
,
Wong
,
YS.
,
Tam
NF
.
Removal of fluoranthene and pyrene by different microalgal species
.
Bioresource technology.
2007
Jan 1;
98
(
2
):
273
80
.
73.
Steffen
,
KT.
,
Hatakka
,
A.
,
Hofrichter
M.
Degradation of benzo [a] pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase
.
Applied and Environmental Microbiology.
2003
Jul;
69
(
7
):
3957
64
.
74.
Baldrian
,
P.
, in
der Wiesche
C
,
Gabriel
J
,
Nerud
F
,
Zadražil
F
.
Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil
.
Applied and Environmental Microbiology.
2000
Jun 1;
66
(
6
):
2471
8
.
75.
Dzul-Puc
,
JD.
,
Esparza-Garcia
,
F.
,
Barajas-Aceves
,
M.
,
Rodriguez-Vazquez R.
Benzo
[a] pyrene removal from soil by
Phanerochaete chrysosporium grown on sugarcane bagasse and pine sawdust
.
Chemosphere.
2005
Jan 1;
58
(
1
):
1
7
.
76.
Xenia
,
ME.
,
Refugio
RV
.
Microorganisms metabolism during bioremediation of oil contaminated soils
.
J. Bioremed. Biodeg.
2016
;
7
(
2
).
77.
Walker
,
JD.
,
Colwell
,
RR.
,
Vaituzis
,
Z.
,
Meyer
SA
.
Petroleum-degrading achlorophyllous alga Prototheca zopfii
.
Nature.
1975
Apr;
254
(
5499
):
423
4
.
78.
Coupe
,
SJ.
,
Smith
,
HG.
,
Newman
,
AP.
,
Puehmeier
T.
Biodegradation and microbial diversity within permeable pavements
.
European Journal of Protistology.
2003
Jan 1;
39
(
4
):
495
8
.
79.
Ghazali
,
FM.
,
Rahman
,
RN.
,
Salleh
,
AB.
,
Basri
M.
Biodegradation of hydrocarbons in soil by microbial consortium
.
International Biodeterioration & Biodegradation.
2004
Jul 1;
54
(
1
):
61
7
.
80.
Simarro
,
R.
,
González
,
N.
,
Bautista
,
LF.
,
Molina
MC
.
Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community
.
Journal of hazardous materials.
2013
Nov 15;
262
:
158
67
.
81.
Chen
,
M.
,
Xu
,
P.
,
Zeng
,
G.
,
Yang
,
C.
,
Huang
,
D.
,
Zhang
J.
Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs
.
Biotechnology advances.
2015
Nov 1;
33
(
6
):
745
55
.
82.
Bell
,
TH.
,
Yergeau
,
E.
,
Martineau
,
C.
,
Juck
,
D.
,
Whyte
,
LG.
,
Greer
CW
.
Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N] DNA-based stable isotope probing and pyrosequencing
.
Applied and environmental microbiology.
2011
Jun 15;
77
(
12
):
4163
71
.
This content is only available via PDF.
You do not currently have access to this content.