As people become more concerned about environmental issues, the effect of carbon emissions on demand becomes more obvious in Bio-materials engineering and manufacturing of other materials. Due to carbon emission and some other factors, a few of the items may deteriorate.in this regard, we have planned to build a Supplier-retailer inventory coordination model for deteriorating items with price and carbon emission dependent demand in a finite planning horizon. In both the centralized and decentralized cases, we are solving the model. The main objective of this research article is to identify the optimal cycle length for each order such that the total cost which is a combination of holding, purchasing cost, deterioration, ordering cost, and carbon emission have become minimal as possible. This study supports retailers and suppliers in reducing total inventory costs and carbon emission by computing the optimal amount of the order and optimal order interval. Finally, we are presenting numerical examples of the suggested method and its optimal results. As well as effects of changing the various parameters on the optimal total cost are also explained in detail graphically and in tabular form. A sensitivity analysis has also been conducted with the help of Mathematica version-12. In addition, several managerial insights are also highlighted. These observations are extremely managerial and informative for businesses seeking profitability while also satisfying their environmental responsibilities, as well as this study is very helpful for the government policy of any nation.

1.
S.P.
Aggarwal
and
C.K.
Jaggi
,
J. Oper. Res. Soc.
46
(
5
),
658
662
(
1995
).
2.
L.
Aliabadi
,
R.
Yazdanparast
, and
M.M
Nasiri
,
Int. J. Manag.
14
(
2
),
124
136
(
2019
).
3.
S.F.
Amato
,
Bio. and Medical Devices.
79
92
(
2015
).
5.
A.
Barman
,
R.
Das
, and
P. K.
De
, “
Pricing and inventory decisions of multi-item deteriorating inventory system under stock, time and price sensitive demand policy
.” in
International Conference System Modeling and Advancement in Research Trends (SMART)-
2020
, pp.
453
458
.
6.
T.
Chakrabarti
, and
K.S.
Chaudhuri
,
Int. J. Prod. Econ.
49
(
3
),
205
213
(
1997
).
7.
R.R.
Chowdhury
,
S.
Ghosh
, and
K.
Chaudhuri
,
Int. J. Appl. Comput. Math.
3
(
2
),
1001
1017
(
2017
).
8.
P.
Chu
,
K.J.
Chung
, and
S.P.
Lan
,
Comput Oper Res.
25
(
10
),
817
824
(
1998
).
9.
K.J.
Chung
,
OPSEARCH.
37
(
4
),
267
281
(
2000
).
10.
R.P.
Covert
and
G.C.
Philip
,
AIIE transactions.
5
(
4
),
323
326
(
1973
).
11.
P.
Ghare
and
G.
Schrader
,
Int. J. Ind. Eng.
14
(
2
),
238
243
(
1963
).
12.
S. K.
Ghosh
and
K.
Chaudhuri
,
Int. J. Syst. Sci.
37
(
10
),
663
672
(
2006
).
13.
B.C.
Giri
and
K.S.
Chaudhuri
,
Int. J. Syst. Sci.
28
(
2
),
153
159
(
1997
).
14.
S. K.
Goyal
,
J. Oper. Res. Soc.
335
338
(
1985
).
16.
A.
Haleem
,
S.
Khan
,
S.
Luthra
,
H.
Varshney
,
M.
Alam
, and
M. I.
Khan
,
Bus. Strategy. Environ.
30
(
4
),
2119
2146
(
2021
)
17.
M.
Hariga
,
J Oper Res Soc.
47
(
10
),
1228
1246
(
1996
).
18.
V.
Hovelaque
and
L.
Bironneau
,
Int. J. Prod. Econ.
164
,
285
291
(
2015
).
19.
J.
HUANG
,
Int. Bus. Manag.
12
(
3
),
71
77
(
2016
).
20.
K.
Karthikeyan
and
G.
Santhi
,
Int. J. Appl. Eng.
10
,
55
(
2015
).
21.
S. J.
Kim
and
B.
Sarkar
,
Math. Probl. Eng.
(
2017
).
23.
H.C.
Liao
,
C.H.
Tsai
, and
C. T.
Su
,
Int. J. Prod. Econ.
63
(
2
),
207
214
(
2000
).
24.
U.
Mishra
,
L. E.
Cárdenas-Barrón
,
S.
Tiwari
,
A. A.
Shaikh
, and
G.
Treviño-Garza
,
Ann. Oper. Res.
254
(
1
),
165
190
(
2017
)
25.
U.
Mishra
,
J.
Tijerina-Aguilera
,
S.
Tiwari
, and
L. E.
Cárdenas-Barrón
,
Math. Probl. Eng.
(
2018
).
26.
R. B.
Mishra
,
Int. J. Prod. Res.
13
(
5
),
495
505
(
1975
).
27.
R.
Nandra
,
A.
Majumder
, and
M.
Mishra
,
RAIRO Oper. Res.
55
,
S2773
S2794
(
2021
).
28.
H.
Sabahno
,
Proc. World Acad. Sci. Eng. Technol.
34
,
219
223
(
2008
).
29.
B.
Sarkar
,
Appl. Math. Model.
37
(
5
),
3138
3151
(
2013
).
30.
B.
Sarkar
and
S.
Sarkar
,
J. Econ. Model.
30
,
924
932
(
2013
).
31.
T.
Sarkar
,
S. K.
Ghosh
, and
K.
Chaudhuri
,
Appl. Math. Comput.
218
(
18
),
9147
9155
(
2012
).
32.
A.
Sepehri
,
U.
Mishra
,
M.L.
Tseng
, and
B.
Sarkar
,
J. Math.
9
(
5
),
470
(
2021
).
33.
B. K.
Sett
,
B.
Sarkar
, and
A.
Goswami
,
Sci. Iran.
19
(
6
),
1969
1977
(
2012
).
34.
P.
Singh
,
N. K.
Mishra
,
V.
Singh
, and
S.
Saxena
, “An EOQ model of time quadratic and inventory dependent demand for deteriorated items with partially backlogged shortages under trade credit,” in
AIP conference proceedin-2017
, Vol.
1860
, (
AIP Publishing LLC
,
2017
) pp.
020037
.
35.
V.
Singh
,
N. K.
Mishra
,
S.
Mishra
,
P.
Singh
, and
S.
Saxena
, “A green supply chain model for time quadratic inventory dependent demand and partially backlogging with weibull deterioration under the finite horizon,” in
AIP conference proceedin-2019
, Vol.
2080
, (
AIP Publishing LLC
,
2019
) pp.
060002
.
36.
P.
Tadikamalla
,
AIIE Trans.
10
,
100
103
(
1978
).
37.
J.T.
Teng
and
C.T.
Chang
,
Comput Oper Res.
32
(
2
),
297
308
(
2005
).
38.
M.
Wahab
,
S.
Mamun
, and
P.
Ongkunaruk
,
Int. J. Prod. Econ.
134
(
1
),
151
158
(
2011
).
39.
H.M.
Wee
,
J. Eng. Econ.
43
(
2
),
151
168
(
1998
).
40.
R. K.
Yadav
and
A.
Vats
,
IOSR j. math.
10
(
3
),
47
52
(
2014
).
41.
P.C.
Yang
and
H.M.
Wee
,
J. Prod. Plan. Control.
11
(
5
),
474
480
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.