Nanoparticles (NPs) are indeed a class of materials composed of a variety of metals or non-metal elements that have distinctive characteristics and a wide range of applications in research and medicine. The biological fabrication of nanoparticles using macro-microscopic entities such as plants, bacteria, fungus, seaweed, and microalgae is a low-cost, one-step approach that is also environmentally beneficial. Biosensing, photo catalysis, drug transport, imaging, nano device manufacture, and usage as antimicrobial agents and in medicine are all significant biological implications of nanoparticles. In recent years, multidrug-resistant pathogenic microbial strains have emerged, and the majority of current antibiotics are ineffective against them. Metallic nanoparticles due to their high surface area to volume ratio are efficient against a range of pathogenic microorganisms, which has sparked scientists’ interest in developing new antibiotics. Since nanoparticles attack numerous biomolecules at once and have the ability to generate ROS, they minimise the emergence of resistant strains and thus have the potential to diminish or eliminate the generation of more resistant bacteria. The one-pot green synthesis is expected to result in enhanced antimicrobial benefits by amplifying the particular plant extract’s ability to combat microbes. This opens the door for these NPs to be used in a variety of applications, including the production of effective antibacterial agents for the management of emerging multidrug-resistant pathogenic bacteria, leading to improved health, environmental protection, and the prevention of infectious illnesses.

1.
Christian
P.
,
Von der Kammer
F.
,
Baalousha
M.
,
Hofmann
T.
Nanoparticles: structure, properties, preparation and behaviour in environmental media
.
Ecotoxicology.
2008
;
17
(
5
):
326
43
.
2.
Mohanraj
V.
,
Chen
Y.
Nanoparticles-a review
.
Tropical journal of pharmaceutical research.
2006
;
5
(
1
):
561
73
.
3.
Ealia
SAM
,
Saravanakumar
M
, editors. A review on the classification, characterisation, synthesis of nanoparticles and their application.
IOP Conference Series: Materials Science and Engineering
;
2017
:
IOP Publishing
.
4.
Khan
I.
,
Saeed
K.
,
Khan
I.
Nanoparticles: Properties, applications and toxicities
.
Arabian journal of chemistry.
2019
;
12
(
7
):
908
31
.
5.
Kumari
B.
A Review on Nanoparticles: Their Preparation method and applications
.
Ind Res J Pharm Sci.
2018
;
5
(
2
):
1420
.
6.
Tiwari
DK.
,
Behari
J.
,
Sen
P.
Application of nanoparticles in waste water treatment
1
.
2008
.
7.
Tai
CY.
,
Tai
C-T
,
Chang
M-H
,
Liu
H-S.
Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor
.
Industrial & engineering chemistry research.
2007
;
46
(
17
):
5536
41
.
8.
Cho
EJ.
,
Holback
H.
,
Liu
KC.
,
Abouelmagd
SA.
,
Park
J.
,
Yeo
Y.
Nanoparticle characterization: state of the art, challenges, and emerging technologies
.
Molecular pharmaceutics.
2013
;
10
(
6
):
2093
110
.
9.
C
Thomas
S.
,
Kumar
Mishra
P.
,
Talegaonkar
S.
Ceramic nanoparticles: fabrication methods and applications in drug delivery
.
Current pharmaceutical design.
2015
;
21
(
42
):
6165
88
.
10.
Hisatomi
T.
,
Kubota
J.
,
Domen
K.
Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
.
Chemical Society Reviews.
2014
;
43
(
22
):
7520
35
.
11.
Mansha
M.
,
Khan
I.
,
Ullah
N.
,
Qurashi
A.
Synthesis, characterization and visible-light-driven photoelectrochemical hydrogen evolution reaction of carbazole-containing conjugated polymers
.
International Journal of Hydrogen Energy.
2017
;
42
(
16
):
10952
61
.
12.
Gujrati
M.
,
Malamas
A.
,
Shin
T.
,
Jin
E.
,
Sun
Y.
,
Lu
Z-R.
Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release
.
Molecular pharmaceutics.
2014
;
11
(
8
):
2734
44
.
13.
Satyanarayana
T.
,
Reddy
SS
.
A review on chemical and physical synthesis methods of nanomaterials
.
International Journal for Research in Applied Science & Engineering Technology.
2018
;
6
(
1
).
14.
Abou
El-Nour
KM.,
Eftaiha
Aa.
,
Al-Warthan
A.
,
Ammar
RA
.
Synthesis and applications of silver nanoparticles
.
Arabian journal of chemistry.
2010
;
3
(
3
):
135
40
.
15.
Amendola
V.
,
Meneghetti
M.
Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles
.
Physical chemistry chemical physics.
2009
;
11
(
20
):
3805
21
.
16.
Yadav
TP.
,
Yadav
RM.
,
Singh
DP
.
Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites
.
Nanoscience and Nanotechnology.
2012
;
2
(
3
):
22
48
.
17.
Mann
S.
,
Burkett
SL.
,
Davis
SA.
,
Fowler
CE.
,
Mendelson
NH.
,
Sims
SD.
, et al
Sol− gel synthesis of organized matter
.
Chemistry of materials.
1997
;
9
(
11
):
2300
10
.
18.
D’Amato
R.
,
Falconieri
M.
,
Gagliardi
S.
,
Popovici
E.
,
Serra
E.
,
Terranova
G.
, et al
Synthesis of ceramic nanoparticles by laser pyrolysis: From research to applications
.
Journal of analytical and applied pyrolysis.
2013
;
104
:
461
9
.
19.
Iravani
S.
,
Korbekandi
H.
,
Mirmohammadi
SV.
,
Zolfaghari
B.
Synthesis of silver nanoparticles: chemical, physical and biological methods
.
Research in pharmaceutical sciences.
2014
;
9
(
6
):
385
.
20.
Singh
J.
,
Dutta
T.
,
Kim
K-H
,
Rawat
M.
,
Samddar
P.
,
Kumar
P.
‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation
.
Journal of nanobiotechnology.
2018
;
16
(
1
):
1
24
.
21.
Mohanpuria
P.
,
Rana
NK.
,
Yadav
SK
.
Biosynthesis of nanoparticles: technological concepts and future applications
.
Journal of nanoparticle research.
2008
;
10
(
3
):
507
17
.
22.
Marchiol
L.
Synthesis of metal nanoparticles in living plants
.
Italian Journal of Agronomy.
2012
;
7
(
3
):
e37
e
.
23.
Iravani
S.
Green synthesis of metal nanoparticles using plants
.
Green Chemistry.
2011
;
13
(
10
):
2638
50
.
24.
Mehta
M.
,
Sharma
M.
,
Pathania
K.
,
Jena
PK.
,
Bhushan
I.
Degradation of synthetic dyes using nanoparticles: a mini-review
.
Environmental Science and Pollution Research.
2021
;
28
(
36
):
49434
46
.
25.
Wang
L.
,
Hu
C.
,
Shao
L.
The antimicrobial activity of nanoparticles: present situation and prospects for the future
.
International journal of nanomedicine.
2017
;
12
:
1227
.
26.
Singh
P.
,
Kim
Y-J
,
Zhang
D.
,
Yang
D-C.
Biological synthesis of nanoparticles from plants and microorganisms
.
Trends in biotechnology.
2016
;
34
(
7
):
588
99
.
27.
Prabhu
S.
,
Poulose
EK
.
Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects
.
International nano letters.
2012
;
2
(
1
):
1
10
.
28.
Makarov
V.
,
Love
A.
,
Sinitsyna
O.
,
Makarova
S.
,
Yaminsky
I.
,
Taliansky
M.
, et al “
Green” nanotechnologies: synthesis of metal nanoparticles using plants
.
Acta Naturae
(англоязычная версия).
2014
;
6
(
1 (20
)).
29.
Zhang
X.
,
Yan
S.
,
Tyagi
R.
,
Surampalli
R.
Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates
.
Chemosphere.
2011
;
82
(
4
):
489
94
.
30.
Shah
M.
,
Fawcett
D.
,
Sharma
S.
,
Tripathy
SK.
,
Poinern
GEJ
.
Green synthesis of metallic nanoparticles via biological entities
.
Materials.
2015
;
8
(
11
):
7278
308
.
31.
Gahlawat
G.
,
Choudhury
AR
.
A review on the biosynthesis of metal and metal salt nanoparticles by microbes
.
RSC advances.
2019
;
9
(
23
):
12944
67
.
32.
Agarwal
H.
,
Kumar
SV.
,
Rajeshkumar
S.
A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach
.
Resource-Efficient Technologies.
2017
;
3
(
4
):
406
13
.
33.
Thakkar
KN.
,
Mhatre
SS.
,
Parikh
RY
.
Biological synthesis of metallic nanoparticles
.
Nanomedicine: nanotechnology, biology and medicine.
2010
;
6
(
2
):
257
62
.
34.
Castro-Longoria
E.
,
Vilchis-Nestor
AR.
,
Avalos-Borja
M.
Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa
.
Colloids and surfaces B: Biointerfaces.
2011
;
83
(
1
):
42
8
.
35.
Alghuthaymi
MA.
,
Almoammar
H.
,
Rai
M.
,
Said-Galiev
E.
,
Abd-Elsalam
KA
.
Myconanoparticles: synthesis and their role in phytopathogens management
.
Biotechnology & Biotechnological Equipment.
2015
;
29
(
2
):
221
36
.
36.
Golinska
P.
,
Wypij
M.
,
Ingle
AP.
,
Gupta
I.
,
Dahm
H.
,
Rai
M.
Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity
.
Applied microbiology and biotechnology.
2014
;
98
(
19
):
8083
97
.
37.
Apte
M.
,
Sambre
D.
,
Gaikawad
S.
,
Joshi
S.
,
Bankar
A.
,
Kumar
AR.
, et al
Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin
.
Amb Express.
2013
;
3
(
1
):
1
8
.
38.
Seshadri
S.
,
Saranya
K.
,
Kowshik
M.
Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum
.
Biotechnology progress.
2011
;
27
(
5
):
1464
9
.
39.
Waghmare
SR.
,
Mulla
MN.
,
Marathe
SR.
,
Sonawane
KD
.
Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms
.
3 Biotech.
2015
;
5
(
1
):
33
8
.
40.
Kobayashi
M.
,
Tomita
S.
,
Sawada
K.
,
Shiba
K.
,
Yanagi
H.
,
Yamashita
I.
, et al
Chiral meta-molecules consisting of gold nanoparticles and genetically engineered tobacco mosaic virus
.
Optics express.
2012
;
20
(
22
):
24856
63
.
41.
Sunkar
S.
,
Nachiyar
CV
.
Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus
.
Asian Pacific Journal of Tropical Biomedicine.
2012
;
2
(
12
):
953
9
.
42.
Divya
M.
,
Kiran
GS.
,
Hassan
S.
,
Selvin
J.
Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections
.
Biocatalysis and agricultural biotechnology.
2019
;
18
:
101037
.
43.
Gahlawat
G.
,
Shikha
S.
,
Chaddha
BS.
,
Chaudhuri
SR.
,
Mayilraj
S.
,
Choudhury
AR
.
Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera
.
Microbial cell factories.
2016
;
15
(
1
):
1
14
.
44.
Raj
R.
,
Dalei
K.
,
Chakraborty
J.
,
Das
S.
Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution
.
Journal of colloid and interface science.
2016
;
462
:
166
75
.
45.
Naik
MM.
,
Prabhu
MS.
,
Samant
SN.
,
Naik
PM.
,
Shirodkar
S.
Synergistic action of silver nanoparticles synthesized from silver resistant estuarine Pseudomonas aeruginosa strain SN5 with antibiotics against antibiotic resistant bacterial human pathogens
.
Thalassas: an International Journal of Marine Sciences.
2017
;
33
(
1
):
73
80
.
46.
Srinath
B.
,
Namratha
K.
,
Byrappa
K.
Eco-friendly synthesis of gold nanoparticles by Bacillus subtilis and their environmental applications
.
Advanced Science Letters.
2018
;
24
(
8
):
5942
6
.
47.
Kulkarni
RR.
,
Shaiwale
NS.
,
Deobagkar
DN.
,
Deobagkar
DD
.
Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity
.
International journal of nanomedicine.
2015
;
10
:
963
.
48.
Buszewski
B.
,
Railean-Plugaru
V.
,
Pomastowski
P.
,
Rafińska
K.
,
Szultka-Mlynska
M.
,
Golinska
P.
, et al
Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain
.
Journal of microbiology, immunology and infection.
2018
;
51
(
1
):
45
54
.
49.
Abd-Elnaby
HM.
,
Abo-Elala
GM.
,
Abdel-Raouf
UM.
,
Hamed
MM
.
Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13
.
The Egyptian Journal of Aquatic Research.
2016
;
42
(
3
):
301
12
.
50.
Ranjitha
V.
,
Rai
VR
.
Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity
.
3 Biotech.
2017
;
7
(
5
):
1
7
.
51.
Silva-Vinhote
N.
,
Mara
e
,
Caballero
NED
, an,
de Amorim
Silva
T.,
Quelemes
PV.
, et al
Extracellular biogenic synthesis of silver nanoparticles by Actinomycetes from amazonic biome and its antimicrobial efficiency
.
African Journal of Biotechnology.
2017
;
16
(
43
):
2072
82
.
52.
Ganachari
SV.
,
Bhat
R.
,
Deshpande
R.
,
Venkataraman
A.
Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies
.
BioNanoScience.
2012
;
2
(
4
):
316
21
.
53.
Bhadwal
AS.
,
Tripathi
R.
,
Gupta
RK.
,
Kumar
N.
,
Singh
R.
,
Shrivastav
A.
Biogenic synthesis and photocatalytic activity of CdS nanoparticles
.
RSC Advances.
2014
;
4
(
19
):
9484
90
.
54.
Mishra
A.
,
Kumari
M.
,
Pandey
S.
,
Chaudhry
V.
,
Gupta
K.
,
Nautiyal
C.
Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp
.
Bioresource technology.
2014
;
166
:
235
42
.
55.
Baskar
G.
,
Chandhuru
J.
,
Fahad
KS.
,
Praveen
A.
,
Chamundeeswari
M.
,
Muthukumar
T.
Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles
.
Journal of Materials Science: Materials in Medicine.
2015
;
26
(
1
):
43
.
56.
Rajput
S.
,
Werezuk
R.
,
Lange
RM.
,
McDermott
MT
.
Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability
.
Langmuir.
2016
;
32
(
34
):
8688
97
.
57.
Kitching
M.
,
Choudhary
P.
,
Inguva
S.
,
Guo
Y.
,
Ramani
M.
,
Das
SK.
, et al
Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles
.
Enzyme and microbial technology.
2016
;
95
:
76
84
.
58.
Hamedi
S.
,
Ghaseminezhad
M.
,
Shokrollahzadeh
S.
,
Shojaosadati
SA
.
Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation
.
Artificial cells, nanomedicine, and biotechnology.
2017
;
45
(
8
):
1588
96
.
59.
El Domany
EB.
,
Essam
TM.
,
Ahmed
AE.
,
Farghali
AA
.
Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus
.
J Appl Pharm Sci.
2018
;
8
:
119
28
.
60.
Ortega
FG.
,
Fernández-Baldo
MA.
,
Fernández
JG.
,
Serrano
MJ.
,
Sanz
MI.
,
Diaz-Mochón
JJ.
, et al
Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast
.
International journal of nanomedicine.
2015
;
10
:
2021
.
61.
Korbekandi
H.
,
Mohseni
S.
,
Mardani
Jouneghani
R.,
Pourhossein
M.
,
Iravani
S.
Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae
.
Artificial cells, nanomedicine, and biotechnology.
2016
;
44
(
1
):
235
9
.
62.
Eugenio
M.
,
Müller
N.
,
Frasés
S.
,
Almeida-Paes
R.
,
Lima
LMT
,
Lemgruber
L.
, et al
Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria
.
Rsc Advances.
2016
;
6
(
12
):
9893
904
.
63.
Cunha
FA.
,
da CSO
Cunha
M.,
da Frota
SM.
,
Mallmann
EJ.
,
Freire
TM.
,
Costa
LS.
, et al
Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities
.
World Journal of Microbiology and Biotechnology.
2018
;
34
(
9
):
1
15
.
64.
Sriramulu
M.
,
Sumathi
S.
Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour
.
Advances in Natural Sciences: Nanoscience and Nanotechnology.
2018
;
9
(
2
):
025018
.
65.
Chen
P-Y
,
Dang
X.
,
Klug
MT.
,
Courchesne
N-MD
,
Qi
J.
,
Hyder
MN.
, et al
M13 virus-enabled synthesis of titanium dioxide nanowires for tunable mesoporous semiconducting networks
.
Chemistry of Materials.
2015
;
27
(
5
):
1531
40
.
66.
Le
DH.
,
Lee
KL.
,
Shukla
S.
,
Commandeur
U.
,
Steinmetz
NF
.
Potato virus X., a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy
.
Nanoscale.
2017
;
9
(
6
):
2348
57
.
67.
Esfandiari
N.
,
Arzanani
MK.
,
Soleimani
M.
,
Kohi-Habibi
M.
,
Svendsen
WE
.
A new application of plant virus nanoparticles as drug delivery in breast cancer
.
Tumor Biology.
2016
;
37
(
1
):
1229
36
.
68.
Chen
CC.
,
Stark
M.
,
Baikoghli
M.
,
Cheng
RH
.
Surface functionalization of hepatitis E virus nanoparticles using chemical conjugation methods
.
JoVE (Journal of Visualized Experiments)
.
2018
(
135
):
e57020
.
69.
Noruzi
M.
Biosynthesis of gold nanoparticles using plant extracts
.
Bioprocess and biosystems engineering.
2015
;
38
(
1
):
1
14
.
70.
Duan
H.
,
Wang
D.
,
Li
Y.
Green chemistry for nanoparticle synthesis
.
Chemical Society Reviews.
2015
;
44
(
16
):
5778
92
.
71.
Marslin
G.
,
Siram
K.
,
Maqbool
Q.
,
Selvakesavan
RK.
,
Kruszka
D.
,
Kachlicki
P.
, et al
Secondary metabolites in the green synthesis of metallic nanoparticles
.
Materials.
2018
;
11
(
6
):
940
.
72.
Rao
KJ.
,
Paria
S.
Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract
.
Materials Research Bulletin.
2013
;
48
(
2
):
628
34
.
73.
Geethalakshmi
R.
,
Sarada
D.
Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties
.
International journal of nanomedicine.
2012
;
7
:
5375
.
74.
Mukunthan
K.
,
Balaji
S.
Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles
.
International Journal of Green Nanotechnology.
2012
;
4
(
2
):
71
9
.
75.
Rashmi
V.
,
Sanjay
KR
.
Green synthesis, characterisation and bioactivity of plant-mediated silver nanoparticles using Decalepis hamiltonii root extract
.
IET nanobiotechnology.
2016
;
11
(
3
):
247
54
.
76.
Geethalakshmi
R.
,
Sarada
D.
Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L
.
Industrial Crops and Products.
2013
;
51
:
107
15
.
77.
Niraimathi
K.
,
Sudha
V.
,
Lavanya
R.
,
Brindha
P.
Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities
.
Colloids and surfaces B: biointerfaces.
2013
;
102
:
288
91
.
78.
Zhou
Y.
,
Tang
R-C.
Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract
.
Journal of Photochemistry and photobiology B: Biology.
2018
;
178
:
463
71
.
79.
Yasmin
A.
,
Ramesh
K.
,
Rajeshkumar
S.
Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating
.
Nano convergence.
2014
;
1
(
1
):
1
7
.
80.
Das
J.
,
Velusamy
P.
Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L
.
Journal of the Taiwan Institute of Chemical Engineers.
2014
;
45
(
5
):
2280
5
.
81.
Philip
D.
Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf
.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.
2010
;
77
(
4
):
807
10
.
82.
Chahardoli
A.
,
Karimi
N.
,
Sadeghi
F.
,
Fattahi
A.
Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities
.
Artificial cells, nanomedicine, and biotechnology.
2018
;
46
(
3
):
579
88
.
83.
Ismail
EH.
,
Khalil
MM.
,
Al Seif
FA.
,
El-Magdoub
F.
,
Bent
A.
,
Rahman
A.
, et al
Biosynthesis of gold nanoparticles using extract of grape (Vitis vinifera) leaves and seeds
.
Prog Nanotechnol Nanomater.
2014
;
3
:
1
12
.
84.
Brumbaugh
AD.
,
Cohen
KA.
,
St. Angelo
SK
.
Ultrasmall copper nanoparticles synthesized with a plant tea reducing agent
.
ACS Sustainable Chemistry & Engineering.
2014
;
2
(
8
):
1933
9
.
85.
Nasrollahzadeh
M.
,
Sajadi
SM
.
Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: Catalytic properties of the resulting particles
.
Journal of colloid and interface science.
2016
;
462
:
243
51
.
86.
Zheng
B.
,
Kong
T.
,
Jing
X.
,
Odoom-Wubah
T.
,
Li
X.
,
Sun
D.
, et al
Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism
.
Journal of colloid and interface science.
2013
;
396
:
138
45
.
87.
Suresh
D.
,
Nethravathi
P.
,
Rajanaika
H.
,
Nagabhushana
H.
,
Sharma
S.
Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities
.
Materials Science in Semiconductor Processing.
2015
;
31
:
446
54
.
88.
Ali
K.
,
Dwivedi
S.
,
Azam
A.
,
Saquib
Q.
,
Al-Said
MS.
,
Alkhedhairy
AA.
, et al
Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates
.
Journal of colloid and interface science.
2016
;
472
:
145
56
.
89.
Dobrucka
R.
,
Długaszewska
J.
Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract
.
Saudi journal of biological sciences.
2016
;
23
(
4
):
517
23
.
90.
Nagajyothi
P.
,
Sreekanth
T.
,
Tettey
CO.
,
Jun
YI.
,
Mook
SH
.
Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma
.
Bioorganic & medicinal chemistry letters.
2014
;
24
(
17
):
4298
303
.
91.
Malik
P.
,
Shankar
R.
,
Malik
V.
,
Sharma
N.
,
Mukherjee
TK
.
Green chemistry based benign routes for nanoparticle synthesis
.
Journal of Nanoparticles.
2014
;
2014
.
92.
Akhtar
MS.
,
Panwar
J.
,
Yun
Y-S.
Biogenic synthesis of metallic nanoparticles by plant extracts
.
ACS Sustainable Chemistry & Engineering.
2013
;
1
(
6
):
591
602
.
93.
Mittal
AK.
,
Chisti
Y.
,
Banerjee
UC
.
Synthesis of metallic nanoparticles using plant extracts
.
Biotechnology advances.
2013
;
31
(
2
):
346
56
.
94.
Momeni
S.
,
Nabipour
I.
A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide
.
Applied biochemistry and biotechnology.
2015
;
176
(
7
):
1937
49
.
95.
Singh
P.
,
Kim
YJ.
,
Yang
DC
.
A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves
.
Artificial cells, nanomedicine, and biotechnology.
2016
;
44
(
8
):
1949
57
.
96.
Murugan
K.
,
Benelli
G.
,
Panneerselvam
C.
,
Subramaniam
J.
,
Jeyalalitha
T.
,
Dinesh
D.
, et al
Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes
.
Experimental parasitology.
2015
;
153
:
129
38
.
97.
Elango
G.
,
Roopan
SM
.
Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles
.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.
2015
;
139
:
367
73
.
98.
Kora
AJ.
,
Beedu
SR.
,
Jayaraman
A.
Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity
.
Organic and medicinal chemistry letters.
2012
;
2
(
1
):
1
10
.
99.
Velmurugan
P.
,
Park
J-H
,
Lee
S-M
,
Jang
J-S
,
Lee
K-J
,
Han
S-S
, et al
Synthesis and characterization of nanosilver with antibacterial properties using Pinus densiflora young cone extract
.
Journal of Photochemistry and Photobiology B: Biology.
2015
;
147
:
63
8
.
100.
Sadeghi
B.
,
Rostami
A.
,
Momeni
S.
Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity
.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.
2015
;
134
:
326
32
.
101.
Maensiri
S.
,
Laokul
P.
,
Klinkaewnarong
J.
,
Phokha
S.
,
Promarak
V.
,
Seraphin
S.
Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties
.
J Optoelectron Adv Mater.
2008
;
10
(
3
):
161
5
.
102.
Vilchis-Nestor
AR.
,
Sánchez-Mendieta
V.
,
Camacho-López
MA.
,
Gómez-Espinosa
RM.
,
Camacho-López
MA.
,
Arenas-Alatorre
JA
.
Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract
.
Materials letters.
2008
;
62
(
17-18
):
3103
5
.
103.
Sathishkumar
M.
,
Sneha
K.
,
Yun
Y.
Palladium nanocrystal synthesis using Curcuma longa tuber extract
.
Int J Mater Sci.
2009
;
4
(
1
):
11
7
.
104.
Song
JY.
,
Kwon
E-Y
,
Kim
BS
.
Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract
.
Bioprocess and Biosystems Engineering.
2010
;
33
(
1
):
159
64
.
105.
Satyavani
K.
,
Ramanathan
T.
,
Gurudeeban
S.
Green synthesis of silver nanoparticles by using stem derived callus extract of bitter apple (Citrullus colocynthis
).
Dig J Nanomater Biostruct.
2011
;
6
(
3
):
1019
24
.
106.
Liu
W.
,
Wu
Y.
,
Wang
C.
,
Li
HC.
,
Wang
T.
,
Liao
CY.
, et al
Impact of silver nanoparticles on human cells: effect of particle size
.
Nanotoxicology.
2010
;
4
(
3
):
319
30
.
107.
Abbaszadegan
A.
,
Ghahramani
Y.
,
Gholami
A.
,
Hemmateenejad
B.
,
Dorostkar
S.
,
Nabavizadeh
M.
, et al
The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study
.
Journal of Nanomaterials.
2015
;
2015
.
108.
Ramalingam
B.
,
Parandhaman
T.
,
Das
SK
.
Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa
.
ACS applied materials & interfaces.
2016
;
8
(
7
):
4963
76
.
109.
Ahmad
A.
,
Wei
Y.
,
Syed
F.
,
Tahir
K.
,
Rehman
AU.
,
Khan
A.
, et al
The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles
.
Microbial pathogenesis.
2017
;
102
:
133
42
.
110.
Gomaa
EZ
.
Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria
.
The Journal of general and applied microbiology.
2017
;
63
(
1
):
36
43
.
111.
Ravichandran
A.
,
Subramanian
P.
,
Manoharan
V.
,
Muthu
T.
,
Periyannan
R.
,
Thangapandi
M.
, et al
Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities
.
Journal of Photochemistry and Photobiology B: Biology.
2018
;
185
:
117
25
.
112.
Yuan
Y-G
,
Peng
Q-L
,
Gurunathan
S.
Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy
.
International journal of molecular sciences.
2017
;
18
(
3
):
569
.
113.
Ghosh
S.
,
Patil
S.
,
Ahire
M.
,
Kitture
R.
,
Kale
S.
,
Pardesi
K.
, et al
Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents
.
International journal of nanomedicine.
2012
;
7
:
483
.
114.
Gogoi
SK.
,
Gopinath
P.
,
Paul
A.
,
Ramesh
A.
,
Ghosh
SS.
,
Chattopadhyay
A.
Green fluorescent protein-expressing escherichia c oli as a model system for investigating the antimicrobial activities of silver nanoparticles
.
Langmuir.
2006
;
22
(
22
):
9322
8
.
115.
Soenen
SJ.
,
Rivera-Gil
P.
,
Montenegro
J-M
,
Parak
WJ.
,
De Smedt
SC.
,
Braeckmans
K.
Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation
.
Nano today.
2011
;
6
(
5
):
446
65
.
116.
Belluco
S.
,
Losasso
C.
,
Patuzzi
I.
,
Rigo
L.
,
Conficoni
D.
,
Gallocchio
F.
, et al
Silver as antibacterial toward Listeria monocytogenes
.
Frontiers in microbiology.
2016
;
7
:
307
.
117.
Kim
S-H
,
Lee
H-S
,
Ryu
D-S
,
Choi
S-J
,
Lee
D-S.
Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli
.
Microbiology and Biotechnology Letters.
2011
;
39
(
1
):
77
85
.
118.
Aleaghil
SA.
,
Fattahy
E.
,
Baei
B.
,
Saghali
M.
,
Bagheri
H.
,
Javid
N.
, et al
Antibacterial activity of Zinc oxide nanoparticles on Staphylococcus aureus
.
International Journal of Advanced Biotechnology and Research.
2016
;
7
(
3
):
1569
75
.
This content is only available via PDF.
You do not currently have access to this content.