Sentiment analysis is the interpretation and classification of users’ emotions (positive, negative, neutral) about a subject in text data using text analysis Comments and opinions, especially those contained in social media, are a source of data that can be used to measure the level of popularity of a program or product launched. Social media is a means to convey aspirations directly, but every aspiration is from social media users. Everyone who expresses opinions on social media contains positive, negative, and neutral sentiments. The implementation of the Ministry of Education and Culture’s policy on the implementation of distance learning policies during the pandemic COVID-19 received various responses from the people of Indonesia. neutral as many as 894 comments, then 52 comments with negative sentiment, and 32 comments with positive sentiment with an accuracy value of 98.79%.

1.
Kementerian Pendidikan dan Kebudayaan Republik Indonesia
.
2020
.
Surat Edaran Nomor 4 tahun 2020 Tentang Pelaksanaan Pendidikan dalam Masa Darurat Covid-19
. https://kemdikbud.go.id/main/blog/2020/03/mendikbud-terbitkan-se-tentang-pelaksanaan-pendidikan-dalam-masa-darurat-covid-19.
2.
H.
Tuhuteru
, ‘
Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine
’,
Inf. Syst. Dev.
, vol.
5
, no.
2
, pp.
7
13
,
2020
.
3.
V.
Vyas
and
V.
Uma
, ‘
An Extensive study of Sentiment Analysis tools and Binary Classification of tweets using Rapid Miner
’,
Procedia Comput. Sci.
, vol.
125
, pp.
329
335
,
2018
.
4.
P.
Algoritma
, ‘
Analisa Sentimen Menggunakan Naïve Bayes Untuk Mengetahui Presentase Komentar Pada Aplikasi Go-Jek
’, no.
128
.
5.
Laksana
,
J.
and
Purwarianti
,
A.
,
2014
, August. Indonesian Twitter text authority classification for government in Bandung.
In 2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)
(pp.
129
134
).
IEEE
.
6.
Liu
,
B.
,
2012
.
Sentiment Analysis and OpinionMining.
[e-book].
Chicago
:
Morgan & Claypool Publisher
.
7.
A.
Kumar
and
T. M.
Sebastian
, ‘
Sentiment Analysis: A Perspective on its Past, Present and Future
’,
Int. J. Intell. Syst. Appl.
, vol.
4
, no.
10
, pp.
1
14
,
2012
.
8.
Ling
,
Juen
,
I
Putu
Eka N.
Kencana
, and
Tjokorda Bagus
Oka
. (
2014
)
“Analisis Sentimen menggunakan Metode Naïve Bayes Classifier dengan Seleksi Fitur Chi Square [Title in English: Sentiment Analysis Using Naïve Bayes Classifier Method with Feature Selection of Chi
.
9.
Liu
,
B.
, &
Zhang
,
L.
(
2012
). A survey of opinion mining and sentiment analysis.
In Mining text data
(pp.
415
463
).
Springer
,
Boston, MA
.
10.
Liu
,
B.
(
2010
).
Sentiment analysis: A multi-faceted problem
.
IEEE Intelligent Systems
,
25
(
3
),
76
80
.
11.
Zhang
,
L.
,
Wang
,
S.
, &
Liu
,
B.
(
2018
).
Deep learning for sentiment analysis: A survey
.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
,
8
(
4
),
e1253
.
12.
Cambria
,
E.
,
Schuller
,
B.
,
Liu
,
B.
,
Wang
,
H.
, &
Havasi
,
C.
(
2013
).
Knowledge-based approaches to concept-level sentiment analysis
.
IEEE intelligent systems
,
28
(
2
),
12
14
.
13.
Zhang
,
L.
,
Ghosh
,
R.
,
Dekhil
,
M.
,
Hsu
,
M.
, &
Liu
,
B.
(
2011
).
Combining lexicon-based and learning-based methods for Twitter sentiment analysis. HP Laboratories
,
Technical Report
HPL-2011,
89
.
This content is only available via PDF.
You do not currently have access to this content.