Epidemiology of brain cancer data in Indonesia to date is inadequate, this is due to suboptimal diagnostic techniques and incomplete case registration problems. One of the factors causing delays in early detection of brain cancer is the high cost and lack of public knowledge about the risk of brain cancer. The purpose of this research is to develop a method and system that is able to detect brain cancer early using a polynomial neural network ridge algorithm. Ridge polynomial neural network is one algorithm with good accuracy results for early detection of brain cancer from artificial neural network methods. This research will use eight input variables including: headaches gradually becoming more frequent and more severe, nausea and vomiting without cause, impaired memory, seizures, tingling and numbness in the arms and legs, visual disturbances such as blurred vision, related problems with the sense of hearing and impaired balance (difficulty in moving). The data will use weights from time-series and then trained using artificial neural networks with the polynomial neural network ridge algorithm.

1.
Avenue
,
B.M.
,
2012
,
About Brain Tumors a Primer for Patients and Caregivers Chicago American Brain Tumor Association (ABTA
).
2.
Ferlay
,
J.
,
Shin
,
H.
,
Bray
,
F.
,
Forman
,
D.
,
Mathers
,
C.
,
Parkin
D.
International Agency for Research on Cancer
. [Online]:
2010
[cited 2016 Maret. Available from: http://www.iarc.fr/en/media-centre/iarcnews/2010/globocan2008.php.
3.
Bushberg
J.
The Essential Physics of Medical Imaging Philadephia
:
USA
,
2003
.
4.
Satria
,
A.
,
2011
,
Angka Harapan Hidup Dua Tahun Penderita Low Grade dan High Grade Glioma yang mendapatkan Terapi Radiasi (Artikel Karya Tulis Ilmiah
),
Universitas Diponegoro
.
5.
Marita
,
M.
,
Nurhasanah
dan
Saubary
,
I.
,
2014
,
Identifikasi Tumor Otak Menggunakan Jaringan Syaraf Tiruan Propagasi Balik pada Citra CT-Scan Otak
,
Prisma Fisika
, Vo.
V
, No.
3
, ISSN : 2337-8204,
117
121
.
6.
Edy
,
S.
,
Windarti
,
I.
,
Wahyuni
,
A.
,
Clinical Characteristics and Histopathology of Brain Tumor at Two Hospital in Banda Lampung
, ISSN : 2337-3776.
7.
Hakim
,
A. A.
,
Kasus - Kasus Tumor Otak di RS H. Adam Malik dan RS Haji Medan tahun
2003
-2004
8.
Fausett
,
L.
,
1994
,
Fundamentals of Neural Network: Architecture, Fundamentals and Aplications
,
Prentice-Hall, Inc
.,
New Jersey
.
9.
Li
Ming
,
Kuang
Lishan
et all.,
2019
,
Brain Tumor Detection Based on Multimodal Information Fusion and Convolutional Neural Network
,
IEEE Access
, pp.
180134
180146
, Vol.
7
, 2019.
10.
Somasundaram
,
S.
,
Gobinath
R.
,
2019
, Current Trends on Deep Learning Model for Brain Tumor Segmentation and Detection-A Review,
International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (Com-IT-Con)
,
IEEE
, pp.
217
221
,
India
, 14-16 Feb 2019.
11.
Sultan
,
H.A.
,
Salem
,
N.M.
,
Al-Atabany
,
A.W.
,
2019
,
Multi-Classification of Brain Tumor Images Using Deep Neural Network
,
IEEE Access
, pp.
69215
69225
, Vol.
7
, 2019.
12.
Gumaei
,
A.
, et all,
2019
,
A Hybrid Feature Extraction Method with Regularized Extreme Learning Machine for Brain Tumor Classification
,
IEEE Access
, pp.
36266
36273
, V0.
7
, 2019.
13.
Leleury
,
Z a.
,
Lesnussa
,
Y A.
,
Madiuw
,
J.
,
2016
,
Sistem Diagnosa Penyakit Dalam dengan Menggunakan Jaringan Syaraf Tiruan metode Backpropagation dan Learning Vector Quantization
,
Jurnal Matematika Integratif
, Vol.
12
, No.
2
, Oktober 2016,
89
98
.
14.
Handayani
,
N.
,
Analisis Metode Jaringan Syaraf Tiruan Backpropagation untuk Pengenalan Sel Kanker Otak
,
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)
, ISSN : 2089-9033,
1
8
.
15.
Zamani
,
M A.
,
2012
,
Teknik Pomits, Implementasi Algoritma Genetika pada Struktur
Backpropagation Neural Network untuk Klasifikasi Kanker Payudara
Vo.
1
, No.
1
.
16.
Arif
,
R S.
, Deteksi Tumor Otak berdasarkan Citra Magnetic Resonance Imaging (MRI) berbasis Jaringan Syaraf Tiruan
Radial Basis Function (RBF)
,
ITT Telkom
.
17.
Epitropakis
,
M. G.
,
Vrahatis
,
M. N.
,
2005
,
Root finding and approximation approaches through neural networks
,
ACM SIGSAM Bulletin
, Vol
39
, No.
4
, Desember 2005.
18.
Karnavas
,
Y. L.
,
Papadopoulos
,
D. P.
,
2004
,
Excitation Control of a Synchronous Machine Using Polynomial Neural Networks
,
Journal of ELECTRICAL ENGINEERING
, VOL.
55
, N. O.
7-8
. 2004,
169
179
, ISSN 1335-3632.
19.
Ginting
,
R U.
,
2013
, Algoritma Optimasi Chaos pada Ridge Polynomial Neural Network untuk Estimasi Biaya Software,
Seminar Nasional Aplikasi Teknologi Informasi (SNATI)
, ISSN: 1907-5022, D-21-D-24, 15 Juni 2013,
Yogyakarta
.
20.
Nirmawaty
,
D A.
,
Suhariningsih
,
Saraseati
,
D A.
,
Deteksi Kanker Serviks (Carsinoma Serviks Uteri) pada Citra Hasil Rekaman CT-Scan Menggunakan Jaringan Syaraf Tiruan
.
21.
Suksmikanti
,
M.
,
2010
, PengenalanPola Berbasis Jaringan Syaraf Tiruan dalam Analisa CT-Scan Tumor Otak Beligna,
Seminar Nasional Aplikasi Teknologi Informasi (SNATI)
, ISSN: 1907-5022, G-26 – G-31, 19 Juni 2010,
Yogyakarta
.
This content is only available via PDF.
You do not currently have access to this content.