This study was carried out to develop multi-input-single-output (MISO) models using an artificial neural network to predict the concentrations of PM2.5 and PM10 respectively based on meteorological parameters. Data pre-processing using variable importance in projection (VIP) scores managed to select significant input toward output for model development. Based on the feature selection, model development was built with and without input selection using a nonlinear autoregressive network with exogenous inputs (NARX) neural network model which made used of 2 number of delays, implementing Levenberg-Marquardt as training algorithm. The performance of the prediction model was evaluated by measuring mean sum square error (MSE) and coefficient of determination (R2) values. Model prediction of PM2.5 and PM10 concentration using machine learning is achieved and useful not only to improve public awareness but the air quality management in Malaysia as well. The model prediction using features selection is comparable with using all input variables in the model prediction of PM10 and PM2.5 with the range of coefficient determination, R2 within 0.8700 and 0.9100 and mean square error (MSE) of 0.28 to 0.33 respectively.

1.
N.A.
Mabahwi
,
O.L.H.
Leh
and
D.
Omar
,
Procedia Soc. Behav. Sci.
170
,
282
291
(
2015
).
2.
I.
Manisalidis
,
E.
Stavropoulou
,
A.
Stavropoulos
and
E.
Bezirtzoglou
,
Front. Public Health
8
,
14
(
2020
).
3.
Pollution Index by Country 2020 Mid-Year
. (n.d.). Retrieved December 18, 2020, from https://www.numbeo.com/pollution/rankings_by_country.jsp
4.
A.
Chaloulakou
,
G.
Grivas
and
N.
Spyrellis
,
J Air Waste Manag. Assoc.
53
(
10
),
1183
1190
(
2003
).
5.
B.
Zhang
,
H.
Zhang
,
G.
Zhao
and
J.
Lian
,
Environ. Model. Softw.
,
124
,
104600
(
2020
).
6.
I.G.
McKendry
,
J Air Waste Manag. Assoc.
52
(
9
),
1096
1101
(
2002
).
7.
G.
Asadollahfardi
,
H.
Zangooei
and
S.H.
Aria
,
Asian J. Atmos. Environ.
10
(
2
),
67
79
(
2016
).
8.
S.
Agarwal
,
S.R.S
Sharma
,
M.H.
Rahman
,
S.
Vranckx
,
B.
Maiheu
,
L.
Blyth
,
S.
Janssen
,
P.
Gargava
,
V.K.
Shukla
and
S.
Batra
,
Sci. Total Environ.
735
,
139454
(
2020
).
9.
Y.
Zhang
,
M.
Bocquet
,
V.
Mallet
,
C.
Seigneur
and
A.
Baklanov
,
Atmos. Environ.
60
,
632
655
(
2012
).
10.
S.
Zhang
,
B.
Guo
,
A.
Dong
,
J.
He
,
Z.
Xu
and
S.X.
Chen
, “
Cautionary tales on air-quality improvement in Beijing
” in
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
,
473
(
2205
), (
The Royal Society Publishing
,
London
,
2017
) pp.
20170457
.
11.
M.H.
Kim
,
Y.S.
Kim
,
J.
Lim
,
J.T.
Kim
,
S.W.
Sung
and
C.K.
Yoo
,
Korean J. Chem. Eng.
27
(
6
),
1675
1680
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.