In recent years, technology for manipulating face videos has advanced to the point that a person may be unable to identify manipulation. One can insert a person into a film by pasting their face over the face of another person, or alter a person's lip movement and facial expressions to make them say whatever they want. It's easy to foresee the devastation that these kind of videos could cause if they were generated maliciously; phoney videos of politicians making outrageous statements, television presenters presenting fake news, business partners or family members requesting money, and so forth. These could have a detrimental effect on everyone, from individuals to society and democracy in general.

Deep fake is a term that refers to a combination of deep learning and fake. It refers to content imitation in which the source person swaps the target subject's face to make videos or images of the target subject. Although the process of creating fake content is well-known, Deep fake goes beyond anyone's imagination, making these tactics more powerful and virtually real. Deep fake uses Machine Learning and Artificial Intelligence to change original content to create fraud one.

1.
T.
Fagni
,
F.
Falchi
,
M.
Gambini
,
A.
Martella
, and
M.
Tesconi
,“
TweepFake: About detecting deepfake tweets
,”
PLoS One
, vol.
16
, no.
5
May, pp.
1
16
(
2021
).
2.
R. K.
Kaliyar
,
A.
Goswami
, and
P.
Narang
, “
DeepFakE: improving fake news detection using tensor decomposition-based deep neural network
,”
J. Supercomput.
, vol.
77
, no.
2
, pp.
1015
1037
(
2021
).
3.
S.
Suwajanakorn
,
S. M.
Seitz
, and
I.
Kemelmacher-Shlizerman
, “
Synthesizing Obama
,”
ACM Trans. Graph.
, vol.
36
, no.
4
, pp.
1
13
(
2017
).
4.
Kim
et al., “
Deep video portraits
,”
ACM Trans. Graph.
, vol.
37
, no.
4
(
2018
).
5.
J.
Thies
,
M.
Zollhöfer
, and
M.
Nießner
, “
Deferred neural rendering: Image Synthesis using Neural Textures
,”
ACM Trans. Graph.
, vol.
38
, no.
4
(
2019
).
6.
A.
Khormali
and
J. S.
Yuan
, “
Add: Attention-based deepfake detection approach
,”
Big Data Cogn. Comput.
, vol.
5
, no.
4
(
2021
).
7.
G.
Chierchia
,
G.
Poggi
,
C.
Sansone
, and
L.
Verdoliva
, “
A bayesian-MRF approach for PRNU-based image forgery detection
,”
IEEE Trans. Inf. Forensics Secur.
, vol.
9
, no.
4
, pp.
554
567
(
2014
).
8.
A.
Rossler
,
D.
Cozzolino
,
L.
Verdoliva
,
C.
Riess
,
J.
Thies
, and
M.
Niessner
, “
FaceForensics++: Learning to detect manipulated facial images
,”
Proc. IEEE Int. Conf. Comput. Vis.
, vol. 2019-October, pp.
1
11
(
2019
).
9.
P.
Sun
,
Y.
Li
,
H.
Qi
, and
S.
Lyu
, “
Landmark Breaker: Obstructing DeepFake by Disturbing Landmark Extraction
,” 2020 IEEE Int. Work. Inf. Forensics Secur. WIFS
2020
, pp.
6
11
(
2020
).
10.
P.
Korus
and
J.
Huang
, “
Multi-Scale Analysis Strategies in PRNU-Based Tampering Localization
,”
IEEE Trans. Inf. Forensics Secur.
, vol.
12
, no.
4
, pp.
809
824
(
2017
).
11.
K.
Zhang
,
W.
Zuo
,
Y.
Chen
,
D.
Meng
, and
L.
Zhang
, “
Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising
,”
IEEE Trans. Image Process.
, vol.
26
, no.
7
, pp.
3142
3155
(
2017
).
12.
T.
Carvalho
,
H.
Farid
, and
E.
Kee
, “Exposing photo manipulation from user-guided 3D lighting analysis,”
Media Watermarking, Secur
.
Forensics
2018
, vol.
9409
, p.
940902
(
2015
).
13.
B.
Bayar
and
M. C.
Stamm
, “
A deep learning approach to universal image manipulation detection using a new convolutional layer
,”
IH MMSec 2016 - Proc. 2016 ACM Inf. Hiding Multimed. Secur. Work.
, pp.
5
10
(
2016
).
14.
S.
Lyu
,
X.
Pan
, and
X.
Zhang
, “
Exposing Region Splicing Forgeries with Blind Local Noise Estimation
,”
Int. J. Comput. Vis.
, vol.
110
, no.
2
, pp.
202
221
(
2018
).
15.
J.
Fridrich
and
J.
Kodovsky
, “
Rich models for steganalysis of digital images
,”
IEEE Trans. Inf. Forensics Secur.
, vol.
7
, no.
3
, pp.
868
882
(
2019
.)
16.
P.
Ferrara
,
T.
Bianchi
,
A.
De Rosa
, and
A.
Piva
, “
Image forgery localization via fine-grained analysis of CFA artifacts
,”
IEEE Trans. Inf. Forensics Secur.
, vol.
7
, no.
5
, pp.
1566
1577
(
2019
).
17.
T. J.
De Carvalho
,
C.
Riess
,
E.
Angelopoulou
,
H.
Pedrini
, and
A. D. R.
Rocha
, “
Exposing digital image forgeries by illumination color classification
,”
IEEE Trans. Inf. Forensics Secur.
, vol.
8
, no.
7
, pp.
1182
1194
(
2019
).
18.
H.
Khalid
and
S. S.
Woo
, “
OC-FakeDect: Classifying deepfakes using one-class variationalautoencoder
,”
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work.
, vol. 2020-June, pp.
2794
2803
(
2020
).
19.
L.
Feng
,
L. M.
Po
,
X.
Xu
,
Y.
Li
, and
R.
Ma
, “
Motion-resistant remote imaging photoplethysmography based on the optical properties of skin
,”
IEEE Trans. Circuits Syst. Video Technol.
, vol.
25
, no.
5
, pp.
879
891
(
2015
).
20.
P.
Korus
and
J.
Huang
, “
Multi-Scale Analysis Strategies in PRNU-Based Tampering Localization
,”
IEEE Trans. Inf. Forensics Secur.
, vol.
12
, no.
4
, pp.
809
824
(
2017
).
21.
K.
Zhang
,
W.
Zuo
,
Y.
Chen
,
D.
Meng
, and
L.
Zhang
, “
Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising
,”
IEEE Trans. Image Process.
, vol.
26
, no.
7
, pp.
3142
3155
(
2017
).
22.
T.
Carvalho
,
H.
Farid
, and
E.
Kee
, “Exposing photo manipulation from user-guided 3D lighting analysis,”
Media Watermarking
,
Secur
.
Forensics
2015, vol.
9409
, p.
940902
(
2015
).
23.
H.
Zhang
,
X. J.
Ping
,
M. K.
Xu
, and
R.
Wang
, “
Steganalysis by subtractive pixel adjacency matrix and dimensionality reduction
,”
Sci. China Inf. Sci.
, vol.
57
, no.
4
, pp.
1
7
(
2014
).
24.
B.
Bayar
and
M. C.
Stamm
, “
A deep learning approach to universal image manipulation detection using a new convolutional layer
,”
IH MMSec 2016 - Proc. 2016 ACM Inf. Hiding Multimed. Secur. Work.
, pp.
5
10
(
2016
).
25.
F.
Matern
,
C.
Riess
, and
M.
Stamminger
,
“Exploiting visual artifacts to expose deepfakes and face manipulations,” Proc. - 2019
IEEE Winter Conf. Appl. Comput. Vis. Work. WACVW 2019
, no.
1
, pp.
83
92
(
2019
).
26.
R.
Tolosana
,
S.
Romero-Tapiador
,
R.
Vera-Rodriguez
,
E.
Gonzalez-Sosa
, and
J.
Fierrez
, “
DeepFakes detection across generations: Analysis of facial regions, fusion, and performance evaluation
,”
Eng. Appl. Artif. Intell.
, vol.
110
, no. October 2021, p.
104673
(
2022
).
27.
Z.
Xu
et al., “
Detecting facial manipulated videos based on set convolutional neural networks
,”
J. Vis. Commun. Image Represent.
, vol.
77
, no. December 2020, p.
103119
(
2021
).
28.
X. H.
Nguyen
,
T. S.
Tran
,
V. T.
Le
,
K. D.
Nguyen
, and
D. T.
Truong
, “
Learning Spatio-temporal features to detect manipulated facial videos created by the Deepfake techniques
,”
Forensic Sci. Int. Digit. Investig.
, vol.
36
, p.
301108
(
2021
).
29.
S.
Kolagati
,
T.
Priyadharshini
, and
V. Mary Anita
Rajam
, “
Exposing deepfakes using a deep multilayer perceptron – convolutional neural network model
,”
Int. J. Inf. Manag. Data Insights
, vol.
2
, no.
1
, p.
100054
(
2022
).
30.
S. S.
Khalil
,
S. M.
Youssef
, and
S. N.
Saleh
, “
Article icaps-dfake: An integrated capsule-based model for deepfake image and video detection
,”
Futur. Internet
, vol.
13
, no.
4
(
2021
).
31.
J.
Liu
,
K.
Zhu
,
W.
Lu
,
X.
Luo
, and
X.
Zhao
, “
A lightweight 3D convolutional neural network for deepfake detection
,”
Int. J. Intell. Syst.
, vol.
36
, no.
9
, pp.
4990
5004
(
2021
).
32.
A.
Mitra
,
S. P.
Mohanty
,
P.
Corcoran
, and
E.
Kougianos
, “
A Machine Learning Based Approach for Deepfake Detection in Social Media Through Key Video Frame Extraction
,”
SN Comput. Sci.
, vol.
2
, no.
2
, pp.
1
18
(
2021
).
33.
A.
Singh
,
A. S.
Saimbhi
,
N.
Singh
, and
M.
Mittal
, “
DeepFake Video Detection: A Time-Distributed Approach
,”
SN Comput. Sci.
, vol.
1
, no.
4
, pp.
1
8
(
2020
).
34.
A.
Ismail
,
M.
Elpeltagy
,
M. S.
Zaki
, and
K.
Eldahshan
, “
A new deep learning-based methodology for video deepfake detection using xgboost
,”
Sensors
, vol.
21
, no.
16
, pp.
1
15
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.