Solar air heaters (SAHs) are used in a wide variety of household and industrial applications. Smooth absorber plate in traditional solar duct has a low value of convective heat transfer coefficient. Enhancing the thermal efficiency of SAHs can be achieved by using artificial roughness ribs placed on the absorber plate. However, this use of roughness results in increasing the pressure loss due to the friction between the airflow and roughened plate surface. This paper presents a summarized review of the recent studies that deal with the application of computational fluid dynamics (CFD) to enhance the thermohydraulic performance of SAHs by utilizing different designs of artificial roughness ribs. This includes the selection of a high-performance turbulence model based on Reynolds Averaged Navier Stokes (RANS) approach. The enhancement in the thermal performance parameter of a solar air heater, by utilizing different shaped roughness geometries with different configurations, based on recent studies is presented at a specific value of Reynolds number.

1.
V. P.
Singh
,
S.
Jain
, and
J. J. E. H. T.
Gupta
, “
Analysis of the effect of perforation in multi-v rib artificial roughened single pass solar air heater:-Part A
,”
Experimental Heat Transfer,
pp.
1
20
,
2021
.
2.
Y.
Dhote
and
S. J. J. o. T. I. o. E. S. C.
Thombre
, “
Performance analysis and parametric study of a natural convection solar air heater with in-built oil storage
,”
Journal of The Institution of Engineers (India): Series C,
vol.
97
, no.
4
, pp.
527
537
,
2016
.
3.
A.
Kumar
,
A. P.
Singh
, and
O. J. R. E.
Singh
, “
Efficient designs of double-pass curved solar air heaters
,”
Renewable Energy,
vol.
160
, pp.
1105
1118
,
2020
.
4.
A.
Kabeel
,
A.
Khalil
,
S.
Shalaby
, and
M. J. J. o. S. E. E.
Zayed
, “
Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters
,”
Journal of Solar Energy Engineering,
vol.
138
, no.
5
, p.
051004
,
2016
.
5.
V.
Dabra
,
A. J. E.
Yadav
,
Development
, and
Sustainability
, “
Performance analysis and comparison of glazed and unglazed solar air collector
,”
Environment, Development and Sustainability,
vol.
22
, no.
2
, pp.
863
881
,
2020
.
6.
W.
Lin
,
W.
Gao
, and
T. J. A. T. E.
Liu
, “
A parametric study on the thermal performance of cross-corrugated solar air collectors
,”
Applied Thermal Engineering,
vol.
26
, no.
10
, pp.
1043
1053
,
2006
.
7.
S.
Singh
and
P. J. J. o. S. E. E.
Dhiman
, “
Double duct packed bed solar air heater under combined single and recyclic double air pass
,”
Journal of Solar Energy Engineering,
vol.
138
, no.
1
,
2016
.
8.
K.
Rajarajeswari
,
A. J. R.
Sreekumar
, and
S. E.
Reviews
, “
Matrix solar air heaters–A review
,”
Renewable and Sustainable Energy Reviews,
vol.
57
, pp.
704
712
,
2016
.
9.
A.
Haldar
,
L.
Varshney
, and
P. J. R. E.
Verma
, “
Effect of roughness parameters on performance of solar air heater having artificial wavy roughness using CFD
,”
Renewable Energy,
vol.
184
, pp.
266
279
,
2022
.
10.
J.
Hu
,
X.
Sun
,
J.
Xu
,
Z. J. E.
Li
, and
Buildings
, “
Numerical analysis of mechanical ventilation solar air collector with internal baffles
,”
Energy and Buildings,
vol.
62
, pp.
230
238
,
2013
.
11.
M. G.
Gabhane
and
A. B. J. S. E.
Kanase-Patil
, “
Experimental analysis of double flow solar air heater with multiple C shape roughness
,”
Solar Energy,
vol.
155
, pp.
1411
1416
,
2017
.
12.
A.
Lanjewar
,
J.
Bhagoria
,
R. J. E. T.
Sarviya
, and
F.
Science
, “
Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-Rib roughness
,”
Experimental Thermal and Fluid Science,
vol.
35
, no.
6
, pp.
986
995
,
2011
.
13.
H. K.
Ghritlahre
,
P. K.
Sahu
, and
S. J. S. E.
Chand
, “
Thermal performance and heat transfer analysis of arc shaped roughened solar air heater–An experimental study
,”
Solar Energy,
vol.
199
, pp.
173
182
,
2020
.
14.
G.
Bharadwaj
,
Varun
,
R.
Kumar
, and
A. J. I. j. o. g. e.
Sharma
, “
Heat transfer augmentation and flow characteristics in ribbed triangular duct solar air heater: An experimental analysis
,”
International Journal of Green Energy,
vol.
14
, no.
7
, pp.
587
598
,
2017
.
15.
G. K.
Poongavanam
,
K.
Panchabikesan
,
A. J. D.
Leo
, and
V. J. R. e.
Ramalingam
, “
Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate
,”
Renewable energy,
vol.
127
, pp.
213
229
,
2018
.
16.
S.
Jayanti
,
Computational fluid dynamics for engineers and scientists.
Springer
,
2018
.
17.
A. W.
Date
,
Introduction to computational fluid dynamics.
Cambridge university press
,
2005
.
18.
J. F.
Wendt
,
Computational fluid dynamics: an introduction.
Springer Science & Business Media
,
2008
.
19.
J.
Tu
,
G. H.
Yeoh
, and
C.
Liu
,
Computational fluid dynamics: a practical approach.
Butterworth-Heinemann
,
2018
.
20.
K.
Prasad
and
S. J. A. E.
Mullick
, “
Heat transfer characteristics of a solar air heater used for drying purposes
,”
Applied Energy,
vol.
13
, no.
2
, pp.
83
93
,
1983
.
21.
E. M.
Sparrow
,
S.
Kang
,
W. J. I. j. o. h.
Chuck
, and
m.
transfer
, “
Relation between the points of flow reattachment and maximum heat transfer for regions of flow separation
,”
International Journal of Heat and Mass Transfer,
vol.
30
, no.
7
, pp.
1237
1246
,
1987
.
22.
B.
Prasad
and
J. J. S. e.
Saini
, “
Effect of artificial roughness on heat transfer and friction factor in a solar air heater
,”
Solar energy,
vol.
41
, no.
6
, pp.
555
560
,
1988
.
23.
R. K.
Ravi
and
R. J. A. T. E.
Saini
, “
Nusselt number and friction factor correlations for forced convective type counter flow solar air heater having discrete multi V shaped and staggered rib roughness on both sides of the absorber plate
,”
Applied Thermal Engineering,
vol.
129
, pp.
735
746
,
2018
.
24.
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y. I.
Cho
,
Handbook of heat transfer.
McGraw-Hill
New York
,
1998
.
25.
A.
Boulemtafes-Boukadoum
and
A. J. E. P.
Benzaoui
, “
CFD based analysis of heat transfer enhancement in solar air heater provided with transverse rectangular ribs
,”
Energy Procedia,
vol.
50
, pp.
761
772
,
2014
.
26.
A.
Chaube
,
P.
Sahoo
, and
S. J. R. E.
Solanki
, “
Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater
,”
Renewable Energy,
vol.
31
, no.
3
, pp.
317
331
,
2006
.
27.
G.
Chhaparwal
,
A.
Srivastava
, and
R. J. S. E.
Dayal
, “
Artificial repeated-rib roughness in a solar air heater– a review
,”
Solar Energy,
vol.
194
, pp.
329
359
,
2019
.
28.
V.
Hans
,
R.
Saini
, and
J. J. S. e.
Saini
, “
Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs
,”
Solar energy,
vol.
84
, no.
6
, pp.
898
911
,
2010
.
29.
A. J. E. P.
Kumar
, “
Analysis of heat transfer and fluid flow in different shaped roughness elements on the absorber plate solar air heater duct
,”
Energy Procedia,
vol.
57
, pp.
2102
2111
,
2014
.
30.
R.
Misra
et al, “
Prediction of behavior of triangular solar air heater duct using V-down rib with multiple gaps and turbulence promoters as artificial roughness: a CFD analysis
,”
International Journal of Heat and Mass Transfer,
vol.
162
, p.
120376
,
2020
.
31.
R. S.
Gill
,
V. S.
Hans
, and
R. P. J. A. T. E.
Singh
, “
Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs
,”
Applied Thermal Engineering,
vol.
191
, p.
116871
,
2021
.
32.
R.
Kumar
,
V.
Goel
,
P.
Singh
,
A.
Saxena
,
A. S.
Kashyap
, and
A. J. J. o. E. S.
Rai
, “
Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs
,”
Journal of Energy Storage,
vol.
26
, p.
100978
,
2019
.
33.
A. Z.
Aghaie
,
A. B.
Rahimi
, and
A. J. R. E.
Akbarzadeh
, “
A general optimized geometry of angled ribs for enhancing the thermo-hydraulic behavior of a solar air heater channel–a Taguchi approach
,”
Renewable Energy,
vol.
83
, pp.
47
54
,
2015
.
34.
A.
Kumar
and
M.-H. J. J. o. t. K. S. E. S.
Kim
, “
Numerical study on overall thermal performance in SAH duct with compound roughness of V-shaped ribs and dimples
,”
Journal of the Korean Solar Energy Society,
vol.
35
, no.
4
, pp.
43
55
,
2015
.
35.
M.
Yang
,
X.
Yang
,
X.
Li
,
Z.
Wang
, and
P. J. A. E.
Wang
, “
Design and optimization of a solar air heater with offset strip fin absorber plate
,”
Applied Energy,
vol.
113
, pp.
1349
1362
,
2014
.
36.
L. N.
Azadani
and
N. J. R. E.
Gharouni
, “
Multi objective optimization of cylindrical shape roughness parameters in a solar air heater
,”
Renewable Energy,
vol.
179
, pp.
1156
1168
,
2021
.
37.
H.
Versteeg
and
W. J. T. f. v. m.
Malalasekera
, “
An introdution to computational fluid dynamics
,”
1995
.
38.
S. K.
Bauri
and
A.
Prasad
, “A CFD-based thermal analysis of solar air heater duct artificially roughened with ‘S'shape ribs on absorber plate,” in
AIP Conference Proceedings
,
2021
, vol.
2341
, no.
1
, p.
030009
:
AIP Publishing LLC
.
39.
R.
Kumar
and
V. J. R. E.
Goel
, “
Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses
,”
Renewable Energy,
vol.
172
, pp.
1267
1278
,
2021
.
40.
D.
Jin
,
S.
Quan
,
J.
Zuo
, and
S. J. R. E.
Xu
, “
Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs
,”
Renewable Energy,
vol.
134
, pp.
78
88
,
2019
.
41.
T.
Alam
and
M.-H. J. A. T. E.
Kim
, “
Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs
,”
Applied Thermal Engineering,
vol.
126
, pp.
458
469
,
2017
.
42.
T.
Alam
and
M.-H. J. E.
Kim
, “
Numerical study on thermal hydraulic performance improvement in solar air heater duct with semi ellipse shaped obstacles
,”
Energy,
vol.
112
, pp.
588
598
,
2016
.
43.
I.
Singh
and
S. J. S. E.
Singh
, “
CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements
,”
Solar Energy,
vol.
162
, pp.
442
453
,
2018
.
44.
A.
Gupta
,
L. J. T. S.
Varshney
, and
E.
Progress
, “
Performance prediction for solar air heater having rectangular sectioned tapered rib roughness using CFD
,”
Thermal Science and Engineering Progress,
vol.
4
, pp.
122
132
,
2017
.
45.
A.
Srivastava
,
G. K.
Chhaparwal
,
R. K. J. T. S.
Sharma
, and
E.
Progress
, “
Numerical and experimental investigation of different rib roughness in a solar air heater
,”
Thermal Science and Engineering Progress,
vol.
19
, p.
100576
,
2020
.
46.
Y. M.
Patel
,
S. V.
Jain
, and
V. J. J. A. T. E.
Lakhera
, “
Thermo-hydraulic performance analysis of a solar air heater roughened with reverse NACA profile ribs
,”
Applied Thermal Engineering,
vol.
170
, p.
114940
,
2020
.
47.
A. K.
Barik
,
A.
Mohanty
,
J. R.
Senapati
, and
M. M. J. I. J. o. T. S.
Awad
, “
Constructal design of different ribs for thermo-fluid performance enhancement of a solar air heater (SAH)
,”
International Journal of Thermal Sciences,
vol.
160
, p.
106655
,
2021
.
48.
B.
Souayeh
,
S.
Bhattacharyya
,
N.
Hdhiri
, and
F. J. T. E. P. J. P.
Hammami
, “
Numerical investigation on heat transfer augmentation in a triangular solar air heater tube fitted with angular-cut varied-length twisted tape
,”
The European Physical Journal Plus,
vol.
136
, no.
6
, pp.
1
32
,
2021
.
This content is only available via PDF.
You do not currently have access to this content.