Short-Term significant wave height (SWH) forecasting is essential for many wave energy-related tasks. SWH forecasting techniques may be clustered into three categories: namely, classical, statistical, and data-driven techniques. Data-driven techniques offer less computational burden than classical numerical forecasting methods and improved forecasting capabilities than statistical methods. However, deep learning techniques - even though offering state-of-the-art accuracy in forecasting - long training time and un-interpretability prevent its mainstream adoption. These issues can be mitigated by proper data preparation. this paper proposes a fast and efficient technique that offers excellent forecasting accuracy and fast training time. A combination of Ensemble-Empirical-Mode-Decomposition and Linear Regression (EEMD-LR) is used to forecast the 1 Hr. SWH, with input features’ lag chosen using Bayesian optimization. Several National Buoy Database Center (NDBC) buoys were used to validate the model. The proposed technique outperformed many published techniques, achieving an average improvement of 3.5% and 50.9% in coefficient of determination and mean absolute error metrics, respectively eight state-of-the-art deep learning techniques. Additionally, it offered a short training time with fewer data required for training.

1.
A.
Mrigaud
,
V.
Ramos
,
F.
Paparella
, and
J. V.
Ringwood
, “
Ocean forecasting for wave energy production
,”
J. Mar. Res.
, vol.
75
, no.
3
, pp.
459
505
,
2017
, doi: .
2.
H.
Wang
,
Z.
Lei
,
X.
Zhang
,
B.
Zhou
, and
J.
Peng
, “
A review of deep learning for renewable energy forecasting
,”
Energy Convers. Manag.
, vol.
198
, p.
111799
,
2019
, doi: .
3.
H. L.
Tolman
and
D.
Chalikov
, “
Source Terms in a Third-Generation Wind Wave Model
,”
J. Phys. Oceanogr.
, vol.
26
, no.
11
, pp.
2497
2518
,
1996
, doi: .
4.
J.
Mahjoobi
,
A.
Etemad-Shahidi
, and
M. H.
Kazeminezhad
, “
Hindcasting of wave parameters using different soft computing methods
,”
Appl. Ocean Res.
, vol.
30
, no.
1
, pp.
28
36
,
2008
, doi: .
5.
P.
Zhang
,
E.
Patuwo
, and
M.
Hu
, “
Forecasting With Artificial Neural Networks: The State of the Art
,”
Int. J. Forecast.
, vol.
14
, pp.
35
62
, Mar.
1998
, doi: .
6.
W. Y.
Duan
,
Y.
Han
,
L. M.
Huang
,
B. B.
Zhao
, and
M. H.
Wang
, “
A hybrid EMD-SVR model for the short-term prediction of significant wave height
,”
Ocean Eng.
, vol.
124
, pp.
54
73
,
2016
, doi: .
7.
M.
Ali
,
R.
Prasad
,
Y.
Xiang
, and
R. C.
Deo
, “
Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms
,”
Renew. Sustain. Energy Rev.
, vol.
132
,
2020
, doi: .
8.
K.
Zhao
and
J.
Wang
, “
Significant wave height forecasting based on the hybrid {EMD}-{SVM} method
,”
Indian J. Geo-Marine Sci.
, vol.
48
, no.
12
, pp.
1957
1962
,
2019
, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079533975&partnerID=40&md5=7a206b60af1c4718d46e353ebaa6c99b.
9.
G.
Tang
,
H.
Du
,
X.
Hu
,
Y.
Wang
,
C.
Claramunt
, and
S.
Men
, “
An EMD-PSO-LSSVM hybrid model for significant wave height prediction
,”
Ocean Sci.
,
2021
, doi: .
10.
R.
Tur
and
S.
Yontem
, “
A comparison of soft computing methods for the prediction of wave height parameters
,”
Knowledge-Based Eng. Sci.
, vol.
2
, no.
1
, pp.
31
46
,
2021
.
11.
P. M. R.
Bento
,
J. A. N.
Pombo
,
R. P. G.
Mendes
,
M. R. A.
Calado
, and
S. J. P. S.
Mariano
, “
Ocean wave energy forecasting using optimised deep learning neural networks
,”
Ocean Eng.
, vol.
219
,
2021
, doi: .
12.
S.
Yang
et al, “
A novel hybrid model based on {STL} decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast
,”
Renew. Energy
, vol.
173
, pp.
531
543
,
2021
, doi: .
13.
F.
Nogueira
, “
{Bayesian Optimization}: Open source constrained global optimization tool for {Python}
.” [Online]. Available: https://github.com/fmfn/BayesianOptimization.
14.
N. E.
Huang
et al, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. Math. Phys. Eng. Sci.
, vol.
454
, no.
1971
, pp.
903
995
, Jan.
1998
, [Online]. Available: http://www.jstor.org/stable/53161.
15.
Y.
Lei
,
N.
Li
,
J.
Lin
, and
S.
Wang
, “
Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition
,”
Sensors (Basel).
, vol.
13
, no.
12
, pp.
16950
16964
, Dec.
2013
, doi: .
16.
Z.
Wu
and
N. E.
Huang
, “
ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD
,”
Adv. Adapt. Data Anal.
, vol.
01
, no.
01
, pp.
1
41
,
2009
, doi: .
17.
A.
Gron
,
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
,
1st
ed.
O'Reilly Media, Inc
.,
2017
.
18.
X.
Zhang
and
H.
Dai
, “
Significant Wave Height Prediction with the CRBM-DBN Model
,”
J. Atmos. Ocean. Technol.
, vol.
36
, no.
3
, pp.
333
351
,
2019
, doi: .
19.
M. R.
Kaloop
,
D.
Kumar
,
F.
Zarzoura
,
B.
Roy
, and
J. W.
Hu
, “
A wavelet - {Particle} swarm optimization - {Extreme} learning machine hybrid modeling for significant wave height prediction
,”
Ocean Eng.
, vol.
213
,
2020
, doi: .
20.
S.
Fan
,
N.
Xiao
, and
S.
Dong
, “
A novel model to predict significant wave height based on long short-term memory network
,”
Ocean Eng.
, vol.
205
,
2020
, doi: .
21.
J.
Wang
,
Y.
Wang
, and
J.
Yang
, “
Forecasting of Significant Wave Height Based on Gated Recurrent Unit Network in the Taiwan Strait and Its Adjacent Waters
,”
Water
, vol.
13
, no.
1
,
2021
, doi: .
22.
M.
Ali
et al, “
Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland, Australia
,”
Renew. Energy
, vol.
177
, pp.
1031
1044
,
2021
, doi: .
This content is only available via PDF.
You do not currently have access to this content.