Fluorescence spectroscopy is one of the sensitive techniques for the detection of biochemical changes occur due to cancer and many other pathological conditions. A portable device based on fluorescence spectroscopy has been tested on total of 117 biopsy samples which includes 29 normal, 72 cervical intraepithelial neoplasia I (CIN I), and 16 CIN II cervical tissue samples. A multistep algorithm has been used and different grades are discriminated from normal samples with high sensitivity and specificity. The results of the study indicates that the fluorescence spectroscopy based techniques can be an alternative for the detection of cancer at an early stage.

1.
WHO report on cancer: setting priorities, investing wisely and providing care for all Geneva
:
World Health Organization
;
2020
. Licence: CC BY-NC-SA 3.0 IGO
2.
R. T.
Burkman
, “
Hacker and Moore’s Essentials of Obstetrics and Gynecology
,”
JAMA
,
303
(
3
),
277
281
(
2010
).
3.
IARC Working Group on the Evaluation of Cancer-Preventive Strategies,
International Agency for Research on Cancer, & World Health Organization, Cervix cancer screening
(Vol.
10
).
Diamond Pocket Books (P) Ltd
(
2005
).
4.
J. S.
Berek
, &
N. F.
Hacker
, (Eds.).
Berek and Hacker’s gynecologic oncology
.
Lippincott Williams & Wilkins
, (
2010
).
5.
B.
Yu
,
D. G.
Ferris
,
Y.
Liu
, &
V. K.
Nagarajan
, “
Emerging optical techniques for detection of oral, cervical and anal cancer in low-resource settings
,”
Austin J. Biomed. Eng
,
1
(
2
),
1007
(
2014
).
6.
S. Hariri
Tabrizi
,
S.
Aghamiri
,
F.
Farzaneh
, &
H. J.
Sterenborg
, “
The use of optical spectroscopy for in vivo detection of cervical pre-cancer
,”
Lasers in medical science
,
29
(
2
),
831
845
(
2014
).
7.
K.
Sokolov
,
M.
Follen
, &
R.
Richards-Kortum
, “
Optical spectroscopy for detection of neoplasia
,”
Current opinion in chemical biology
,
6
(
5
),
651
658
(
2002
).
8.
M. K.
Swami
and
P. K.
Gupta
, “
Optical spectroscopy for biomedical diagnosis Proceedings of the National Academy of Sciences
,”
India Section A: Physical Sciences
,
88
(
3
):
453
460
(
2018
).
9.
B. L.
Meena
,
P.
Singh
,
A. N.
Sah
,
K.
Pandey
,
A.
Agarwal
,
C.
Pantola
, &
A.
Pradhan
, “
Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device
,”
Journal of biomedical optics
,
23
(
1
),
015005
(
2018
).
10.
W.
Drexler
, &
J. G.
Fujimoto
(Eds.)., “
Optical coherence tomography: technology and applications
,” (Vol.
2
).
Berlin
:
Springer
(
2015
).
11.
M.
Jermyn
,
J.
Desroches
,
K.
Aubertin
,
K.
St-Arnaud
,
W. J.
Madore
,
De Montigny
,
E.
, … &
F.
Leblond
, “
A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology
,”
Physics in Medicine & Biology
,
61
(
23
),
R370
(
2016
).
12.
R. R.
Kortum
, &
E. S.
Muraca
, “
Quantitative optical spectroscopy for tissue diagnosis
,”
Annual review of physical chemistry
,
47
(
1
),
555
606
(
1996
).
13.
Y. N.
Mirabal
,
S. K.
Chang
,
E. N.
Atkinson
,
A.
Malpica
,
M.
Follen
, &
Richards-Kortum
,
R. R.
Reflectance spectroscopy for in vivo detection of cervical precancer
,”
Journal of biomedical optics
,
7
(
4
),
587
594
(
2002
).
14.
I. J.
Bigio
, &
J. R.
Mourant
, “
Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy
,”
Physics in Medicine & Biology
,
42
(
5
),
803
(
1997
).
15.
R. R.
Alfano
,
D.
Tata
,
J.
Cordero
,
P.
Tomashefsky
,
F.
Longo
, &
M.
Alfano
, “
Laser induced fluorescence spectroscopy from native cancerous and normal tissue
,”
IEEE Journal of Quantum Electronics
,
20
(
12
),
1507
1511
(
1984
).
16.
S.
Devi
,
P. K.
Panigrahi
, &
A.
Pradhan
, “
Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis
,”
Journal of biomedical optics
,
19
(
12
),
127003
(
2014
).
17.
R. S.
Bradley
, &
M. S.
Thorniley
, “
A review of attenuation correction techniques for tissue fluorescence
.”
Journal of the royal society Interface
,
3
(
6
),
1
13
, (
2006
).
18.
S.
Devi
,
P. K.
Panigrahi
, and
A.
Pradhan
, “
Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis
,”
J. Biomed. Opt.
19
(
12
),
127003
(
2014
).
19.
H. L.
Mark
and
D.
Tunnell
, “
Qualitative near-infrared reflectance analysis using Mahalanobis distances
,”
Anal. Chem.
57
(
7
),
1449
1456
(
1985
).
20.
N. C.
Biswal
,
S.
Gupta
,
N.
Ghosh
, &
A.
Pradhan
, “
Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach
,”
Optics express
,
11
(
24
),
3320
3331
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.