Haze pollution refers to the quality of the air during haze events that happened from local or transboundary haze affecting human health and the ecosystem. The Multiple Linear Regression (MLR) models is used in this study for identifying the PM2.5 concentrations for forecasting during haze events in the Southern Region of Peninsular Malaysia. The data from February to April 2019 were taken from three air monitoring stations which are Tangkak (Site 1), Batu Pahat (Site 2), and Kluang (Site 3) including PM2.5 concentrations, wind speed, temperature, and relative humidity. The result of this study shows Station 2 has the highest PM2.5 concentration (217.113 µg/m3), exceeding the standard limit (<35 µg/m3) due to peatland combustion at the District of Muar. There is a negative weak correlation between wind speed (r = -0.167, p < 0.01) and relative humidity (r = -0.029, p<0.01) but a positive weak correlation with temperature (r=0.161, p<0.01). For model development, PM2.5,t+1 had a higher coefficient of determination R2 values at 0.344. Meanwhile, for model validation maximum R2 for PM2.5,t+1 (0.9998). In conclusion, this study provides early information, especially to the local authority to improve the strategies for better air quality management during haze events.

1.
S. Q.
Dotse
,
L.
Dagar
,
M. I.
Petra
and
L. C.
De Silva
, L. C.
Environ. Pollut.
219
,
337
352
(
2016
).
2.
R. S. A.
Usmani
,
A.
Saeed
,
A. M.
Abdullahi
,
T. R.
Pillai
,
N. Z.
Jhanjhi
and
I. A. T.
Hashem
, I. A. T.
Qual Atmos Health
13
,
1093
1118
(
2020
).
3.
N. A.
Manan
,
M.
Manaf
, M. and
R.
Hod
,
R.
Malaysian
J. Public Health Med.
18
,
38
45
(
2018
).
4.
T.
Forsyth
.
Glob Environ Change
25
,
76
86
(
2014
).
5.
F.
Kiew
,
R.
Hirata
,
T.
Hirano
,
W. G.
Xhuan
,
E. B.
Aries
,
K.
Kemudang
,
J.
Wenceslaus
,
L. K.
San
,
L.
Melling
.
Agric For Meteorol.
295
,
108189
(
2020
).
6.
A. N.
Ahmad
,
S.
Abdullah
,
N. C.
Dom
,
A. A.
Mansor
,
K. M. K. K.
Yusof
,
A. N.
Ahmed
,
T.
Prabamroong
and
M.
Ismail
.
Malaysian J. Med. Health Sci.
18
,
97
103
(
2022
).
7.
S. Y.
Fong
,
S.
Abdullah
and
M.
Ismail
.
J Sustain Sci Manag.
13
,
3
18
(
2018
).
8.
S.
Abdullah
,
A. A.
Mansor
,
A. N.
Ahmed
,
N. N. L. M.
Napi
and
M.
Ismail
.
Int J Sci Technol Res
8
,
1752
1755
(
2019
).
9.
S.
Abdullah
,
F. F. A.
Hamid
,
M.
Ismail
,
A. N.
Ahmed
and
W. N. W.
Mansor
.
2019
.
Data Br.
25
,
103969
(2019).
10.
S.
Abdullah
,
N. N. L. M.
Napi
,
A. N.
Ahmed
,
W. N. W.
Mansor
,
A. A.
Mansor
,
M. I.
Ismail
,
A. M.
Abdullah
and
Z. T. A.
Ramly
, Z.T.A.
Atmosphere
11
,
289
(
2020
).
11.
Z.
Bao
,
L.
Chen
,
K.
Li
,
L.
Han
,
X.
Wu
,
X.
Gao
,
M.
Azzi
and
K.
Cen
.
Environ. Pollut.
250
,
520
529
(
2019
).
12.
Y.
Hu
,
E.
Christensen
,
F.
Restuccia
and
G.
Rein
.
Proceedings of the Combustion Institute
37
,
4035
4042
(
2019
).
13.
P.
Lestari
,
F.
Muthmainnah
,
D. A.
Permadi
,
D. A. Characterization of carbonaceous compounds emitted from Indonesian surface and sub surface peat burning
.
Atmos. Pollut. Res.
11
,
1465
1472
(
2020
).
14.
K.
Ravindra
,
T.
Singh
,
V.
Sinha
,
B.
Sinha
,
S.
Paul
,
S. D.
Attri
and
S.
Mor
.
Chemosphere
273
,
128562
. (
2021
).
15.
B. T.
Ly
,
Y.
Matsumi
,
T. V.
Vu
,
K.
Sekiguchi
,
T. T.
Nguyen
,
C. T.
Pham
,
T. D.
Nghiem
,
I. H.
Ngo
,
Y.
Kurotsuchi
,
T. H.
Nguyen
,
T.
Nakayama
, T.
J. Aerosol Sci.
152
,
105716
. (
2021
).
16.
M.
Ismail
,
S.
Abdullah
,
F. S.
Yuen
and
N. A.
Ghazali
. 2016.
EnvironmentAsia
9
,
1
8
(
2016
)
17.
X.
Qi
,
G.
Mei
,
S.
Cuomo
,
C.
Liu
and
N.
Xu
.
Internet of Things
14
,
100127
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.