The present work is an attempt to partially replace the coarse aggregates in concrete by the rubber aggregates and to study their impact on mechanical properties of the obtained lightweight concretes. In fact, the rubber aggregates have less specific gravity and are available in huge amounts worldwide. To produce our lightweight concrete, we replaced coarse aggregates with rubber aggregates by varying the replacement proportion from 0% to 30% with increment of 10%. The obtained samples were subject to several heating / cooling cycles from 25 ° C up to 600 ° C. Then, the sonic auscultation, tensile and compressive tests were carried out to assess the effect of temperature variation on the mechanical properties.

1.
Güneyisi
E.
,
Gesoğlu
M.
and
Özturan
T.
,
Properties of rubberized concretes containing silica fume
.
Cement and Concrete Research
,
34
,
2309
2317
(
2004
).
2.
S.
Sakami
,
F-EZ.
El Abbassi
,
L.
Boukhattem
, Durability of Rubber Concrete: Resistance to Heating and Cooling Cycles.
Chapter In book: INCREaSE 2019
, edited by:
J.
Monteiro
et al.
(
Springer Nature
,
Switzerland AG
,
2020
) pp.
989
999
, doi: .
3.
Garros
M.
«Composites cimentaires incorporant des granulats caoutchouc issus du broyage de pneus usagés : optimisation de la composition et caractérisation
»
Thèse de doctorat, Université
Paul Sabatier de Toulouse
,
2007
.
4.
Eldin
,
N.N.
and
Senouci
A.B
,
Observations on Rubberized Concrete Behavior
.
Journal of Cement, Concrete and Aggregates.
Volume
15
, Issue
1
(
1993
). doi:
5.
Kaloush
K. E.
,
Way
G. B.
and
Zhu
H.
,
Properties of Crumb Rubber Concrete
.
Transportation Research Record: Journal of the Transportation Research Board
, vol.
1914
, issue
1
,
8
14
(
2005
).
6.
Segre
N.
,
Joekes
I.
,
Use of tire rubber particles as addition to cement paste
.
Cement and Concrete Research
, Volume
30
, Issue
9
, Pages
1421
1425
(
2000
).
7.
Xi
Y.
,
Li
Y.
,
Xie
Z.
, and
Lee
J.S.
,
Utilization of Solid Wastes (Waste Glass and Rubber Particles) As Aggregates in Concrete
,
Proc. of International Workshop on Sustainable Development and Concrete Technology
,
Beijing, China
,
45
54
, May 20-21 (
2004
).
8.
I.
Abalouch
,
S.
Sakami
,
F. E.
Elabbassi
, and
L.
Boukhattem
,
Thermal conductivity of modified concrete: Substitution of sand by fine aggregates of glass waste
,
AIP Conf. Proc
2345
, (
2021
), doi: .
9.
La
norme
(NM 10.1.051)
2008
,
Norme Marocaine, Essai pour béton durci, Résistance à la compression des éprouvettes
.
10.
I.
Abalouch
,
S.
Sakami
,
F. E.
Elabbassi
, and
L.
Boukhattem
,
Effects of recycled fine glass aggregates on alkali silica reaction and thermo-mechanical behavior of modified concrete
,
Appl. Sci
11
, (
2021
), doi: .
11.
S.
Sakami
,
L.
Boukhattem
,
M.
Boumhaout
,
B.
Benhamou
,
Development of alfa fiber-based mortar with improved thermo-mechanical properties
.
Appl. Sci.
2020
,
10
,
8021
.
12.
Carnot L.
Nogueira
Kevin L.
Rens
.
Ultrasonic wave propagation in EPS lightweight concrete and effective elastic properties; Construction and Building Materials
, Volume
184
,
634
642
(
2018
).
13.
Alisson Rodrigues
de Oliveira Diasa
,
Felipe Alves
Amanciob
,
Maria Fabíola
de Carvalho Rafaelc
,
Antônio Eduardo Bezerra
Cabrald
.
Study of propagation of ultrasonic pulses in concrete exposed at high temperatures
,
Procedia Structural Integrity
11
,
84
90
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.