It is common sense that nanosatellites, a new generation of small satellites, are characterized by a reduced size envelope, lower cost, and shorter design time. Nevertheless, they are confronted with various challenges, including large thermal gradients or multiple thermal loads. The thermal behavior is usually predicted through simulation which must be well conducted in order to obtain reliable results. The present paper intends to describe the various types of thermal radiation experienced by the nanosatellite, and then simulate them in a rigorous way taking into account the thermal dissipation of the nanosatellite arising mainly from the batteries. The passive thermal control of the nanosatellite was conducted taking into consideration the change of the optical coatings of the material. A first approximation consisting of a simple shape of the nanosatellite to obtain tangible results has been developed while foreseeing a more complex and complete geometry in the future. Based on the results, the temperatures in the two cases, namely the cold and the hot cases, were very distinct. Indeed, for the cold case, the detected temperatures were within the acceptable limit when the ratio α/ε did not exceed unity. As a matter of fact, when α/ε=0.29, the temperature oscillated between 15.44°C marked at the level of the batteries and 13.35°C noted on the shell. Thereafter when α/ε=1.11 the temperature swung between 64.32°C marked at the batteries and 62.37°C read on the shell. However, for the hot case, it was clear that all the temperatures detected were well above the acceptable limit, requiring for this case the intervention of a complementary thermal control to avoid high temperatures if the studied coatings should be kept. In fact, the temperatures found when α/ε=0.29 were of 86.56°C at the level of the batteries and of 80.09°C in the outer shell of the nanosatellite. Similarly when α/ε=1.11, the temperature reached 114.48°C at the level of the batteries and almost 108.2°C on the outer shell by recording 6°C of temperature difference between the inside and the outside of the nanosatellite. Consequently, it appears from the results that the temperatures are very sensitive to the surface coating of the nanosatellite as well as to the heat dissipation at the level of the batteries.

1.
J.
Straub
, «
Using a constellation of CubeSats for in-space optical 3D scanning
», in
2015 IEEE Aerospace Conference
,
2015
, p.
1
8
.
2.
A.
Poghosyan
,
A.
Golkar
, «
CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions
»,
Prog. Aerosp. Sci.
, vol.
88
, p.
59
83
,
2017
.
3.
J.
Straub
, «
Cubesats: A low-cost, very high-return space technology
», in
Proceedings of the 2012 Reinventing Space Conference
,
2012
.
4.
V.
Baturkin
, «
Micro-satellites thermal control—concepts and components
»,
Acta Astronaut.
, vol.
56
, no
1-2
, p.
161
170
,
2005
.
5.
P.
Fortescue
,
G.
Swinerd
,
J.
Stark
,
Spacecraft systems engineering
,
4th éd
.
John Wiley & Sons
,
2011
.
6.
V.
Knap
,
L. K.
Vestergaard
,
D.-I.
Stroe
, «
A review of battery technology in cubesats and small satellite solutions
»,
Energies
, vol.
13
, no
16
, p.
4097
,
2020
.
7.
J. P.
Mason
,
B.
Lamprecht
,
T. N.
Woods
,
C.
Downs
, «
CubeSat On-Orbit Temperature Comparison to Thermal-Balance-Tuned-Model Predictions
»,
J. Thermophys. Heat Transf.
, vol.
32
, no
1
, p.
237
255
, janv.
2018
, doi: .
8.
A.
Akka
,
F.
Benabdelouahab
, «
PASSIVE THERMAL ANALYSIS OF A CUBESAT BY A FINITE ELEMENT MODELING
»,
JP J. Heat Mass Transf.
, vol.
21
, no
1
, p.
133
149
, oct.
2020
, doi: .
9.
A.
Akka
,
F.
Benabdelouahab
,
R.
Yerrou
, «
EVALUATING THE TEMPERATURE TOGGLING OF A NANOSATELLITE THROUGH A PRELIMINARY PASSIVE THERMAL ANALYSIS
»,
JP J. Heat Mass Transf.
, vol.
24
, no
2
, p.
383
391
, nov.
2021
, doi: .
10.
A.
Akka
,
F.
Benabdelouahab
,
R.
Yerrou
, «
Low earth orbit nanosatellite: influence of heat dissipation on passive thermal analysis
»,
Acta Polytech.
, vol.
62
, no
5
, Art. no 5, oct.
2022
, doi: .
11.
J. R.
Wertz
,
D. F.
Everett
,
J. J.
Puschell
,
Space mission engineering: the new SMAD
.
Microcosm Press
,
2011
.
12.
S. W.
Paek
,
S.
Kim
,
L.
Kronig
,
O.
de Weck
, «
Sun-synchronous repeat ground tracks and other useful orbits for future space missions
»,
Aeronaut. J.
, vol.
124
, no
1276
, p.
917
939
,
2020
.
13.
K. E.
Boushon
,
Thermal analysis and control of small satellites in low Earth orbit
.
Missouri University of Science and Technology
,
2018
.
14.
B.
Emery
,
A.
Camps
,
Introduction to satellite remote sensing: atmosphere, ocean, land and cryosphere applications
.
Elsevier
,
2017
.
15.
P.
Shinde
,
A.
Quintero
,
I.
Tansel
,
S.
Tosunoglu
, «
CubeSat Thermal Analysis
», presented at
30th Florida Conference on Recent Advances in Robotics
,
Florida Atlantic University
,
Boca Raton, Florida
, may
2017
.
16.
N.
Athanasopoulos
,
J.
Farmasonis
,
N. J.
Siakavellas
, «
Preliminary design and comparative study of thermal control in a nanosatellite through smart variable emissivity surfaces
»,
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
, vol.
233
, no
9
, p.
3336
3350
,
2019
.
17.
S.
Piedra
,
M.
Torres
,
S.
Ledesma
, «
Thermal numerical analysis of the primary composite structure of a CubeSat
»,
Aerospace
, vol.
6
, no
9
, p.
97
,
2019
.
18.
L. A.
Reyes
,
R.
Cabriales-Gómez
,
C. E.
Chavez
,
B.
Bermúdez-Reyes
,
O.
Lopez-Botello
,
P.
Zambrano-Robledo
, «
Thermal modeling of CIIIASat nanosatellite: A tool for thermal barrier coating selection
»,
Appl. Therm. Eng.
, vol.
166
, p.
114651
,
2020
.
19.
A.
Akka
,
F.
Benabdelouahab
,
R.
Yerrou
, «
Nanosatellite case study: Issue of heat dissipation across passive thermal analysis
»,
E3S Web Conf.
, vol.
336
, p.
00057
,
2022
, doi: .
20.
A.
Akka
,
F.
Benabdelouahab
,
R.
Yerrou
, «
Nanosatellite: A Progressive Vision of Performing Passive Thermal Control
»,
AIP Conf. Proc.
, vol.
2399
, In Press.
This content is only available via PDF.
You do not currently have access to this content.