Fingerprint recognition is the most consistent biometric modality in use. Iris is an externally visible yet protected organ whose unique pattern remains stable throughout life. With continuous improvement in biometrics recognition performance, biometrics security becomes an important topic of research as biometric template security scheme serves as a vital part of a complete biometrics system. Besides, a multimodal biometrics system is introduced to improve the recognition performance, system complexity, security, and applicability of nowadays biometrics applications. Biometric systems are automatic tools used to provide authentication during various applications of modern computing. This work proposes three different design frameworks for multimodal biometric systems based on fingerprint and hand geometry modalities. An analysis is also presented to diagnose various template security issues in the proposed system. Fuzzy analytic hierarchy process (FAHP) is applied with five decision parameters on all the designs, and framework one is found to be better in template data security, templates fusion, and computational efficiency. It is noticed that template data security before storage in the database is challenging. An important observation is that a template may be secured at the feature fusion level, and an indexing technique may be used to improve the size of secured templates. Multi biometrics overcomes these problems. Recently, multi-modal biometric fusion techniques have attracted increasing attention and interest among researchers, in the hope that the supplementary information between different biometrics might improve the recognition performance in some difficult biometric problems. In this paper, we present a multi-biometric recognition system using two types of biometrics Iris, and Finger Print. The fusion is applied at the feature-score level. The experimental results showed that the designed system achieves an excellent recognition rate.

1.
Eskandari
,
M.
;
Toygar
,
Ö.
A new approach for face-iris multimodal biometric recognition using score fusion
.
Int. J. Pattern Recognit. Artif. Intell.
2013
,
27
.
2.
Amour
,
B.
;
Bouden
,
T.
;
Boucher
,
L.
Face-Iris Multimodal Biometric System Based on Hybrid Level Fusion
. In
Proceedings of the 41st International Conference on Telecommunications and Signal Processing (TSP
),
Athens, Greece
,
4
6
July
2018
.
3.
Kabir
,
W.
;
Omair Ahmad
,
M.
;
Swamy
,
M.N.S.
Normalization and Weighting Techniques Based on Genuine-impostor Score Fusion in Multi-biometric Systems
.
IEEE Trans. Inf. Forensics Secure.
2018
,
13
.
4.
Matin
,
A.
;
Mahmud
,
F.
;
Ahmed
,
T.
;
Ejaz
,
M.S.
Weighted Score Level Fusion of Iris and Face to Identify an Individual
. In
Proceedings of the International Conference on Electrical, Computer and Communication Engineering (ECCE
),
Cox's Bazar, Bangladesh
,
16
18
February
2017
.
5.
Sim
,
M.H.
;
Asmuni
,
H.
;
Hassan
,
R.
;
Othman
,
R.M.
Multimodal biometrics: Weighted score level fusion basedon non-ideal iris and face images
.
Expert Syst. Appl.
2014
,
41
,
5390
5404
.
6.
Morizet
,
N.
Reconnaissance Biométrique par Fusion Multimodale du Visage et de l'Iris
. Ph.D. Thesis,
NationalSchool of Telecommunications and Electronics of Paris
,
Paris, French
,
2009
.
7.
Jamdar
,
C.
;
Boke
,
A.
review paper on person identification system using multi-modal biometric based on the face
.
Int. J. Sci. Eng. Technol. Res.
2017
,
6
,
626
629
.
8.
Jain
,
A.K.
;
Nandakumar
,
K.
;
Ross
,
A.
Score normalization in multimodal biometric systems
.
Pattern Recognit.
2005
,
38
,
2270
2285
.
9.
Hong
,
L.
;
Jain
,
A.
Integrating faces and fingerprints for person identification
.
IEEE Trans. Pattern Anal. Mach. Intell.
1998
,
20
,
1295
1307
.
10.
Feng
,
G.
;
Dong
,
K.
;
Hu
,
D.
When Faces Re-combinedWithPalmprints: A Novel Biometric Fusion strategy
. In
Proceedings of the International Conference on Biometric Authentication
,
HongKong, China
,
15
17
July
2004
; pp. 701–707.
11.
Meraoumia
,
A.
;
Chitroub
,
S.
;
Bouridane
,
A.
Fusion of Finger-Knuckle-Print and Palmprint for an Ancient Multi-biometric System of Person Recognition
. In
Proceedings of the IEEE ICC
,
Kyoto, Japan
,
5
9
June
2011
.
12.
Lin
,
S.
;
Wang
,
Y.
;
Xu
,
T.
;
Tang
,
Y.
Palmprint and Palm Vein Multimodal Fusion Biometrics Based on MMNBP. In
Biometric Recognition, Lecture Notes in Computer Science
;
You
,
Z.
,
Zhou
,
J.
,
Wang
,
Y.
,
Sun
,
Z.
,
Shan
,
S.
,
Zheng
,
W.
,
Feng
,
J.
,
Zhao
,
Q.
, Eds.;
Springer International Publishing
:
Berlin/Heidelberg, Germany
,
2016
; Volume
9967
, pp.
326
336
.
13.
Elhoseny
,
M.
;
Essa
,
E.
;
Elkhateb
,
A.
;
Hassanien
,
A.E.
;
Hamad
,
A.
Cascade Multimodal Biometric System Using Fingerprint and Iris Patterns
. In
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics
,
Cairo, Egypt
,
26
28
October
2017
; pp. 590–599.
14.
Hezil
,
N.
;
Boukrouche
,
A.
Multimodal biometric recognition using human ear and palmprint
.
IET Biom.
2017
,
6
,
351
359
.
15.
Walia
,
G.S.
;
Singh
,
T.
;
Singh
,
K.
;
Verma
,
N.
Robust Multimodal Biometric System Based on Optimal ScoreLevel Fusion Model
.
Expert Syst. Appl.
2019
,
116
,
364
376
.
16.
Mansour
,
A.
;
Sadik
,
M.
;
Sabir
,
E.
;
Jabbar
,
M.
AMBAS: An autonomous multimodal biometric authenticationsystem
.
Int. J. Auton. Adapt. Commun. Syst.
2019
,
12
,
187
217
.
17.
Sharma
,
D.
;
Kumar
,
A.
An Empirical Analysis Over the Four Different Feature-Based Face and Iris BiometricRecognition Techniques
.
Int. J. Adv. Comput. Sci. Appl.
2012
,
3
,
13
.
18.
Liu
,
L.
;
Chen
,
J.
;
Fieguth
,
P.
;
Zhao
,
G.
;
Chellappa
,
R.
;
Pietikäinen
,
M.
From BoW to CNN: Two Decades ofTexture Representation for Texture Classification
.
Int. J. Comput. Vis.
2019
,
127
,
74
109
.
19.
Wang
,
Z.
;
Wang
,
E.
;
Wang
,
S.H.
;
Ding
,
Q.
Multimodal Biometric System Using Face-Iris Fusion Feature
.
J. Comput.
2011
,
6
,
931
938
.
20.
Roy
,
K.
;
O'Connor
,
B.
;
Ahmad
,
F.
Multibiometric System Using Level Set, Modified LBP, and Random Forest
.
Int. J. Image Graph.
2014
,
14
,
1
19
.
21.
Huo
,
G.
;
Liu
,
Y.
;
Zhu
,
X.
;
Dong
,
H.
;
He
,
F.
Face–iris multimodal biometric scheme based on feature level fusion
.
J. Electron. Imaging
2015
,
24
.
22.
Moutafis
,
P.
;
Kakadiaris
,
I.A.
Rank-Based Score Normalization for Multi-Biometric Score Fusion
. In
Proceedings of the IEEE International Symposium on Technologies for Homeland Security
,
Waltham, MA, USA
,
5
6
November
2015
.
23.
Eskandari
,
M.
;
Toygar
,
Ö.
Selection of optimized features and weights on face-iris fusion using distance images
.
Comput. Vis. Image Underst.
2015
,
137
,
63
75
.
24.
Bouzouina
,
Y.
;
Hamami
,
L.
Multimodal Biometric: Iris and face recognition based on feature selection of Iris with GA and scores level fusion with SVM
. In
Proceedings of the International Conference on Bio-Engineering for Smart Technologies (BioSMART
),
Paris, France
, 30 August–1 September
2017
.
25.
Jain
M.
,
Singh
V.
,
Rani
A.
(
2019
)
A novel nature-inspired algorithm for optimization: squirrel search algorithm
.
Swarm Evol Comput
44
:
148
175
26.
Mafarja
M.
,
Mirjalili
S.
(
2018
)
Whale optimization approaches for wrapper feature selection
.
Appl Soft Comput
62
:
441
453
27.
Malhotra
, and
C. Dr.
Kant
, (
2013
).
A Novel Approach for Securing Biometric Template
,
Internal Journal of Advanced Research in Computer Science and Software Engineering
,
3
(
5
), pp
397
403
.
28.
Eskandari
,
M.
;
Toygar
,
O.
Fusion of the face and iris biometrics using local and global feature extraction methods
,
Signal. Image Video Process.
2014
,
8
,
995
1006
29.
Ujwalla
Gawande
,
Sreejith R.
Nair
,
Harsha
Balani
,
Nikhil
Pawar
&
Manjiri
Kotpalliwar
A High-Speed Frequency Based Multimodal Biometric System Using Iris and Fingerprint
”.
International Journal on Advanced Computer Engineering and Communication Technology.
Vol.
1
,
2278
5140
,
2012
.
30.
Jain
,
A.K.
,
Nandakumar
,
K.
,
Nagar
,
A.
,
2008b
.
Review article: Biometric template security
.
EURASIP J. Adv. Signal Process.
5
.
31.
Christina
,
A.T.
, et al,
2015
.
A survey on multimodal biometrics and the protection of their templates
.
Int. Fed. Inf. Process.
,
169
184
.
32.
China
,
S.
,
Kaushal
,
S.
,
2015
.
Cloud path selection using AHP for offloading in mobile cloud computing
. In:
Proceedings of 2nd IEEE RAECS UIET
,
Panjab University
,
Chandigarh
, 21-22 December 2015.
This content is only available via PDF.
You do not currently have access to this content.