In image processing to handle the low light images is very challenging task. Low light images have low photon count and low SNR. These images having noise due to that it is blur. To enhance the images, we are going to use the UNet architecture which support to the network consists of a contracting path use convolutional architecture and an expansive path, combines the feature and spatial information through a sequence of up-convolutions and concatenations with high-resolution features from the contracting path which gives it the u-shaped architecture. Traditional image processing pipeline, which tends to perform poorly raw data to overcome this problem we operate on raw sensors data. CNN based approach operates on raw data from the sensor and works effectively. Training deep neural network pipeline successfully works on any other raw sensor data which output with high resolution images. High ISO can be used to increase brightness, but it also amplifies noise so Deep neural network is trained to learn the image processing pipeline for low-light raw data, including color transformations, noise reduction, and image enhancement. This technique will assist with beating the previous strategies and will improve traditional post processing with the net networking to achieve the result up to 98%accurcy and 2% loss.

1.
C.
Chen
,
Q.
Chen
,
J.
Xu
, and
V.
Koltun
,
learning to see in the dark
. In
CVPR
,
2018
.
2.
M.
Gharbi
,
J.
Chen
,
J. T.
Barron
,
S. W.
Hasinoff
, and
F.
Durand
,
Deep bilateral learning for real-time imageenhancement
.
TOG
,
36
(
4
):
118
,
2017
3.
S.W.
Hasinoff
,
D.
Sharlet
,
R.
Geiss
,
A.
Adams
,
J. T.
Barron
,
F.
Kainz
,
J.
Chen
, and
M.
Levoy
,
Burst photography for high dynamic range and low-light imaging on mobile cameras
.
TOG
,
35
(
6
):
192
,
2016
4.
M.
He
,
D.
Chen
,
J.
Liao
,
P. V.
Sander
, and
L.
Yuan
,
Deep exemplar-based colorization
.
TOG
,
37
(
4
):
47
,
2018
.
5.
A.
Nikishaev
, “
How to debug neural networks. Manual
.,”
Machine Learning
, 22 Aug 2017. [Online]. Available: https://medium.com/machine-learning-world/how-to-debug-neural-networks-manual-dc2a200f10f2. [Accessed 24 March 2018].
6.
Jiang
,
Y.
,
Gong
,
X.
,
Liu
,
D.
,
Cheng
,
Y.
,
Fang
,
C.
,
Shen
,
X.
, et al. (
2021
).
Enlightengan: Deep Light EnhancementwithoutPairedSupervision
.
IEEETrans. Image Process.
30
,
2340
2349
.
7.
Y.
Zhang
,
K.
Li
,
K.
Li
,
L.
Wang
,
B.
Zhong
, and
Y.
Fu
,
Image super-resolution using very deep residual channel attention networks
. In
ECCV
,
2018
.
8.
H. C.
Karaimer
and
M. S.
Brown
,
Improving color reproduction accuracy on cameras
. In
CVPR
,
2018
9.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
,
ImageNet classification with deep convolutional neural networks
. In
NIPS
,
2019
10.
Lv
,
F.
,
Li
,
Y.
, and
Lu
,
F.
(
2021
).
Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset
.
Int. J. Comput. Vis.
129
(
7
),
2175
2193
.
11.
IPFS
,“
Multilayer Perceptron
,” IPFS, May
2017
. [Online]. Available: https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Multilayer_perceptron.html. [Accessed 24 March 2018].
12.
Nguyen
P
,
Tran
T
,
Wickramasinghe
N
,
Deep a Convolutional Net for Medical Records
,
IEEE J Biomed Health Inform
2017
;
21
:
22
30
.
13.
Rao
,
N.
,
Lu
,
T.
,
Zhou
,
Q.
,
Zhang
,
Y.
, and
Wang
,
Z.
(
2021
). “
Seeing in the Dark by Component-GAN
,” in
IEEE Signal Process. Lett. (IEEE)
.
14.
L.
Shen
,
Z.
Yue
,
F.
Feng
,
Q.
Chen
,
S.
Liu
, and
J.
Ma
,
MSRnet: Low-light image enhancement using deepconvolutional network
, [Online]. Available: https://arxiv.org/abs/1711.02488
15.
Zhang
,
S.
,
Tang
,
G.-j.
,
Liu
,
X.-h.
,
Luo
,
S.-h.
, and
Wang
,
D.-d.
(
2018
).
Retinex Based Low-Light Image Enhancement Using Guided Filtering and Variational Framework
.
Optoelectron. Lett.
14
(
2
),
156
160
. .
Wang
,
Z.
,
Chen
,
J.
,
Hoi
,
S.C.
Deep learning for image super-resolution: a survey
, arXiv preprint arXiv:1902.06068
16.
Yang
,
W.
,
Zhang
,
X.
,
Tian
,
Y.
,
Wang
,
W.
,
Xue
,
J.H.
,
Liao
,
Q.
,
Deep learning for single image super-resolution: a brief review
.
IEEE Trans. Multimed.
21
(
12
),
3106
3121
(
2019
)
17.
Jiménez-Sánchez
A
,
Albarqouni
S
,
Mateus
D.
, Capsule networks against medical imaging data challenges.
Intravascular imaging and computer assisted stenting and large-scale annotation of biomedical data and expert label synthesis
.
New York: Springer
;
2018
. p.
150
60
.
18.
Xie
,
J.
,
Bian
,
H.
,
Wu
,
Y.
,
Zhao
,
Y.
,
Shan
,
L.
, and
Hao
,
S.
(
2020
).
Semantically-guided Low-Light Image Enhancement
.
Pattern Recognition Lett.
138
,
308
314
.
19.
Wei
,
C.
,
Wang
,
W.
,
Yang
,
W.
, and
Liu
,
J.
(
2018
).
Deep Retinex Decomposition for Low-Light Enhancement
. arXiv. Available at: https://arxiv.org/abs/1808.04560.
This content is only available via PDF.
Published by AIP Publishing.
You do not currently have access to this content.