The increasing terrorist and criminal acts on public, private, and government infrastructure have resulted in a chaotic situation, thereby putting the surveillance system in existence under pressure. Conventionally, information systems rely on users to remember their secret pins (passwords) or tokens, cards, or both to confirm their identity. In order to achieve this in modern times, personal identification is based on the behavioral or physiological traits of individuals. These attributes known as biometrics refer to the unique physiological (e.g., palmprint, fingerprint, face, iris, etc.) or behavioral (e.g., gaits, signature, voice, etc.) traits used for automatic recognition. These biometric traits offer many advantages over knowledge and possession-based approaches. For instance, palmprint images have rich, unique features for reliable human identification, and they have received significant research attention due to their stability, reliability, and uniqueness, which makes them a competitive area of research. This paper provides a mini overview of contactless palmprint recognition systems as well as preliminary findings. The various types of Region of Interest (ROI) extraction algorithms, feature extraction, and matching algorithms are well discussed. In addition, the state-of-the-art performance of existing works is presented.

1.
P.
Wei
,
Z.
Zhou
,
L.
Li
, and
J.
Jiang
, “
Research on face feature extraction based on K-mean algorithm
,”
2018
.
2.
J.
Aravinth
,
S.
Valarmathy
,
J.
Aravinth
, and
S.
Valarmathy
, “
modal biometric recognition and its application to remote biometrics authentication Multi classi fi er-based score level fusion of multi-modal biometric recognition and its application to remote biometrics authentication
,” vol.
2199
, no. December,
2016
, .
3.
Yashoda
Makhija
and
Rama Shankar
Sharma
, “
Face Recognition: Novel Comparison of Various Feature Extraction Techniques Yashoda
,”
Harmon. Search Nat. Inspired Optim. Algorithms
, vol.
741
, pp.
1189
1198
,
2019
, .
4.
D.
Zhang
,
W.
Zuo
, and
F.
Yue
, “
A comparative study of palmprint recognition algorithms
,”
ACM Comput. Surv.
, vol.
44
, no.
1
,
2012
, .
5.
T.
Chai
,
S.
Wang
, and
D.
Sun
, “
A palmprint ROI extraction method for mobile devices in complex environment
,”
Int. Conf. Signal Process. Proceedings, ICSP
, vol.
0
, pp.
1342
1346
,
2016
, .
6.
S.
Verma
and
S.
Chandran
, “
Contactless palmprint verification system using 2-D gabor filter and principal component analysis
,”
Int. Arab J. Inf. Technol.
, vol.
16
, no.
1
, pp.
23
29
,
2019
.
7.
M. M. H.
Ali
, “
Study Of Edge Detection Methods Based On Palmprint lines
,” no. October
2017
,
2016
, .
8.
A.
Gumaei
,
R.
Sammouda
,
A. M.
Al-Salman
, and
A.
Alsanad
, “
An effective palmprint recognition approach for visible and multispectral sensor images
,”
Sensors (Switzerland)
, vol.
18
, no.
5
,
2018
, .
9.
L.
Leng
,
G.
Liu
,
M.
Li
,
M. K.
Khan
, and
A. M.
Al-Khouri
, “
Logical conjunction of triple-perpendicular-directional translation residual for contactless palmprint preprocessing
,”
ITNG 2014-Proc. 11th Int. Conf. Inf. Technol. New Gener
., pp.
523
528
,
2014
, .
10.
A. K.
Jain
,
K.
Nandakumar
, and
A.
Ross
, “
50 years of biometric research: Accomplishments, challenges, and opportunities
,”
Pattern Recognit. Lett.
, vol.
79
, pp.
80
105
,
2016
, .
11.
D.
Zhang
,
G.
Lu
,
W.
Li
,
L.
Zhang
, and
N.
Luo
, “
Palmprint recognition using 3-D information
,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
, vol.
39
, no.
5
, pp.
505
519
,
2009
, .
12.
Y.
Xu
,
Z.
Fan
,
M.
Qiu
,
D.
Zhang
, and
J.
Yang
, “
Neurocomputing A sparse representation method of bimodal biometrics and palmprint recognition experiments
,” vol.
103
, pp.
164
171
,
2013
, .
13.
L.
Fei
,
G.
Lu
,
W.
Jia
,
S.
Teng
, and
D.
Zhang
, “
Feature extraction methods for palmprint recognition: A survey and evaluation
,”
IEEE Trans. Syst. Man, Cybern. Syst.
, vol.
49
, no.
2
, pp.
346
363
,
2019
, .
14.
D.
Zhang
,
W.
Zuo
, and
F.
Yue
, “
A Comparative Study of Palmprint Recognition Algorithms
,” vol.
44
, no.
1
,
2012
, .
15.
L.
Fei
,
Y.
Xu
, and
D.
Zhang
, “
Half-orientation extraction of palmprint features ✩
Pattern Recognit. Lett.
, vol.
69
, pp.
35
41
,
2016
, .
16.
L.
Fei
,
B.
Zhang
,
Y.
Xu
, and
L.
Yan
, “
Palmprint Recognition Using Neighboring Direction Indicator
,”
IEEE Trans. Human-Machine Syst.
, vol.
46
, no.
6
, pp.
787
798
,
2016
, .
17.
A.
Kumar
, “
Towards More Accurate Matching of Contactless Palmprint Images under Less Constrained Environments
,” vol.
6013
, no.
c
, pp.
1
13
,
2018
, .
18.
Y. and
A. L.
Liu
, “
A Deep Learning Based framework to Detect and Recognize Humans using Contactless Palmprints in the wild
,”
Tech. Report-COMP-K-24
,
2018
.
19.
Y.
Xu
,
L.
Fei
, and
D.
Zhang
, “
Combining Left and Right Palmprint Images for More Accurate Personal Identification
,” vol.
24
, no.
2
, pp.
549
559
,
2015
.
20.
K.
Ito
,
T.
Sato
,
S.
Aoyama
,
S.
Sakai
,
S.
Yusa
, and
T.
Aoki
, “
Palm Region Extraction for Contactless Palmprint Recognition
,” pp.
334
340
,
2015
.
21.
W.
Li
,
D.
Zhang
,
L.
Zhang
,
G.
Lu
, and
J.
Yan
, “
3-D Palmprint Recognition With Joint Line and Orientation Features
,” vol.
41
, no.
2
, pp.
274
279
,
2011
.
22.
L.
Lu
,
X.
Zhang
,
X.
Xu
, and
D.
Shang
, “
Multispectral image fusion for illumination-invariant palmprint recognition
,”
2017
, .
23.
S. Hom
Choudhury
,
A.
Kumar
, and
S. H.
Laskar
, “
Biometric Authentication through Unification of Finger Dorsal Biometric Traits
,”
Inf. Sci. (Ny)
., vol.
497
, pp.
202
218
,
2019
, .
24.
X.
Liang
,
D.
Zhang
,
G.
Lu
,
Z.
Guo
, and
N.
Luo
, “
A Novel Multicamera System for High-Speed Touchless Palm Recognition
,”
IEEE Trans. Syst. Man, Cybern. Syst.
, vol.
PP
, pp.
1
15
,
2019
, .
25.
B.
Zhang
,
W.
Li
,
P.
Qing
, and
D.
Zhang
, “
Palm-print classification by global features
,”
IEEE Trans. Syst. Man, Cybern. Part ASystems Humans
, vol.
43
, no.
2
, pp.
370
378
,
2013
, .
26.
G. K. O.
Michael
,
T.
Connie
, and
A. B. J.
Teoh
, “
A contactless biometric system using multiple hand features
,”
J. Vis. Commun. Image Represent.
, vol.
23
, no.
7
, pp.
1068
1084
,
2012
, .
27.
D.
Hong
,
W.
Liu
,
J.
Su
,
Z.
Pan
, and
G.
Wang
, “
Neurocomputing A novel hierarchical approach for multispectral palmprint recognition
,”
Neurocomputing
, vol.
151
, pp.
511
521
,
2015
, .
28.
L.
Fei
,
Y.
Xu
,
B.
Zhang
,
X.
Fang
, and
J.
Wen
, “
Low-rank representation integrated with principal line distance for contactless palmprint recognition
,”
Neurocomputing
, vol.
218
, pp.
264
275
,
2016
, .
29.
G. K. O.
Michael
,
T.
Connie
, and
A. Teoh Beng
Jin
, “
An innovative contactless palm print and knuckle print recognition system
,”
Pattern Recognit. Lett.
, vol.
31
, no.
12
, pp.
1708
1719
,
2010
, .
30.
I.
Universitario
et al., “
Multisampling approach applied to contactless hand biometrics
,” pp.
224
229
,
2012
.
31.
Y.
Xu
,
S.
Member
,
L.
Fei
,
S.
Member
,
J.
Wen
, and
D.
Zhang
, “
Discriminative and Robust Competitive Code for Palmprint Recognition
,” vol.
6
, pp.
1
10
,
2016
.
32.
V.
Kanhangad
,
A.
Kumar
,
S.
Member
, and
D.
Zhang
, “
A Uni fi ed Framework for Contactless Hand Veri fi cation
,” vol.
6
, no.
3
, pp.
1014
1027
,
2011
.
33.
A.
Morales
,
M. A.
Ferrer
, and
A.
Kumar
, “
Improved Palmprint Authentication using Contactless Imaging 1
,” pp.
4
9
,
2010
.
34.
A.
Morales
and
M. A. F. A.
Kumar
, “
Towards contactless palmprint authentication
,” no. October 2010, pp.
407
416
,
2011
, .
35.
L.
Zhang
,
Z.
Cheng
,
Y.
Shen
, and
D.
Wang
, “
Palmprint and palmvein recognition based on DCNN and a new large-scale contactless palmvein dataset
,”
Symmetry (Basel)
., vol.
10
, no.
4
, Apr.
2018
, .
36.
X.
Bai
,
N.
Gao
,
Z.
Zhang
, and
D.
Zhang
, “
Person Recognition Using 3-D Palmprint Data Based on Full-Field Sinusoidal Fringe Projection
,”
IEEE Trans. Instrum. Meas.
, vol.
PP
, pp.
1
12
,
2018
, .
37.
Wen
,
Z.
Lai
,
Y.
Zhan
, and
J.
Cui
, “
The L 2, 1-norm-based unsupervised optimal feature selection with applications to action recognition
,” vol.
60
, pp.
515
530
,
2016
, .
38.
R.
Kozik
, “
Contactless palmprint and knuckle biometrics for mobile devices
,” no.
123
, pp.
73
85
,
2012
, .
39.
L.
Zhang
,
L.
Zhang
,
D.
Zhang
, and
H.
Zhu
, “
Ensemble of local and global information for finger–knuckle-print recognition
,”
Pattern Recognit.
, vol.
44
, no.
9
, pp.
1990
1998
,
2011
, .
40.
Z.
Le-qing
and
Z.
San-yuan
, “
Multimodal biometric identification system based on finger geometry, knuckle print and palm print
,” vol.
31
, pp.
1641
1649
,
2010
, .
41.
S.
Hom
,
A.
Kumar
, and
S.
Haque
, “
Biometric Authentication through Unification of Finger Dorsal Biometric Traits
,” vol.
497
, pp.
202
218
,
2019
, .
42.
W.
El-Tarhouni
,
L.
Boubchir
,
N.
Al-Maadeed
,
M.
Elbendak
, and
A.
Bouridane
, “
Multispectral palmprint recognition based on local binary pattern histogram fourier features and gabor filter
,”
Proc. 2016 6th Eur. Work. Vis. Inf. Process. EUVIP 2016
,
2016
, .
43.
L.
Fei
,
Y.
Xu
,
B.
Zhang
,
X.
Fang
, and
J.
Wen
, “
Neurocomputing Low-rank representation integrated with principal line distance for contactless palmprint recognition
,”
Neurocomputing
, vol.
218
, pp.
264
275
,
2016
, .
44.
Y.
Liu
and
A.
Kumar
, “
arXiv : 1812. 11319v1 [ cs. CV ] 29 Dec 2018 and Recognize Humans using Contactless Palmprints in the Wild
,”
2018
.
45.
F.
Yue
,
W.
Zuo
,
D.
Zhang
, and
B.
Li
, “
Fast palmprint identification with multiple templates per subject
,”
Pattern Recognit. Lett.
, vol.
32
, no.
8
, pp.
1108
1118
,
2011
, .
46.
W.
Zuo
,
F.
Yue
, and
D.
Zhang
, “
On accurate orientation extraction and appropriate distance measure for low-resolution palmprint recognition
,” vol.
44
, pp.
964
972
,
2011
, .
47.
W.
Li
,
D.
Zhang
,
G.
Lu
, and
N.
Luo
, “
A Novel 3-D Palmprint Acquisition System
,” vol.
42
, no.
2
, pp.
443
452
,
2012
.
48.
D.
Tamrakar
and
P.
Khanna
, “
Kernel Discriminant Analysis of Block-wise Gaussian Derivative Phase Pattern Histogram for Palmprint Recognition
,”
2016
, .
49.
X.
Qu
,
S.
Member
,
D.
Zhang
, and
G.
Lu
, “
A Novel Line-Scan Palmprint Acquisition System
,” pp.
1
11
,
2016
.
50.
K.
Zhang
,
D.
Huang
, and
D.
Zhang
, “
An optimized palmprint recognition approach based on image sharpness
,”
Pattern Recognit. Lett.
, vol.
85
, pp.
65
71
,
2017
, .
51.
A.
Lumini
and
L.
Nanni
, “
Overview of the combination of biometric matchers
,”
Inf. Fusion
, vol.
33
, pp.
71
85
,
2017
, .
52.
A. S.
Elsayed
, “
Masked SIFT with Align-Based Refinement for Contactless Palmprint Recognition
,”
IET Biometrics
,
2018
.
53.
D.
Hong
,
W.
Liu
,
J.
Su
,
Z.
Pan
, and
G.
Wang
, “
A novel hierarchical approach for multispectral palmprint recognition
,”
Neurocomputing
, vol.
151
, no.
P1
, pp.
511
521
,
2015
, .
54.
M. M.
Ata
,
K. M.
Elgamily
, and
M. A.
Mohamed
, “
Toward Palmprint Recognition Methodology Based Machine Learning Techniques
,” vol.
4
, no.
4
, pp.
1
10
,
2020
.
55.
D.
Zhang
,
V.
Kanhangad
,
N.
Luo
, and
A.
Kumar
, “
Robust palmprint verification using 2D and 3D features
,”
Pattern Recognit.
, vol.
43
, no.
1
, pp.
358
368
,
2010
, .
56.
X.
Chen
,
M.
Yu
,
F.
Yue
, and
B.
Li
, “
Orientation Field Code Hashing : A Novel Method for Fast Palmprint Identification
,” vol.
8
, no.
5
, pp.
1038
1051
,
2021
.
57.
G. K. O.
Michael
, “
A Contactless Biometric System using Palmprint and Palmvein Features
,”
2014
.
58.
E. A. M.
Alrahawe
,
V. T.
Humbe
, and
G. N.
Shinde
, “
A Contactless Palmprint Biometric System Based on CNN
,” vol.
12
, no.
13
, pp.
6344
6356
,
2021
.
59.
K.
Usha
and
M.
Ezhilarasan
, “
Personal recognition using finger knuckle shape oriented features and texture analysis
,” pp.
416
431
,
2016
, .
60.
O. B. and
M.
Ekinci
, “
No Title Sreo-Based Palmprint Recognition in various 3D Postures
,”
Expert Syst. with Appl.
,
2017
.
61.
Y.
Liu
and
A.
Kumar
, “
A Deep Learning based Framework to Detect and Recognize Humans using Contactless Palmprints in the Wild
,”
2018
, [Online]. Available: http://arxiv.org/abs/1812.11319.
62.
L.
Zhang
,
Z.
Cheng
,
Y.
Shen
, and
D.
Wang
, “
Palmprint and palmvein recognition based on DCNN and a new large-scale contactless palmvein dataset
,”
Symmetry (Basel)
., vol.
10
, no.
4
, pp.
1
15
,
2018
, .
63.
Genovese
,
V.
Piuri
,
K. N.
Plataniotis
, and
F.
Scotti
, “
PalmNet: Gabor-PCA convolutional networks for touchless palmprint recognition
,”
IEEE Trans. Inf. Forensics Secur.
, vol.
14
, no.
12
, pp.
3160
3174
,
2019
, .
This content is only available via PDF.
Published by AIP Publishing.
You do not currently have access to this content.