With hyperspherical coordinates, the Schrödinger equation for some quantum mechanical many-body systems such as electrons in atoms like He and charged excitons in quantum wells can be solved in a similar way with the wave functions being expanded into orthonormal complete basis sets of the hyperspherical harmonics of hyperangles and generalized Laguerre polynomials of the hyperradius. Numerical results obtained explicitly by solving a simple secular equation show good agreement with those obtained through other computationally intensive methods. The eigenenergies and particle correlation in the low-lying states are investigated. Alternatively, the solutions of multi-electron systems can be obtained by using a linear combination of one-dimensional wave functions. Numerical results of small systems like He and H2 show that the one-dimensional bases along the x, y, z axes are good choices which facilitate easy numerical integration. The method developed is an effective numerical approach to the many-body problem and could be extended to larger atomic and molecular systems.

1.
J. S.
Sims
and
S. A.
Hagstrom
,
The Journal of Chemical Physics
124
,
094101
(
2006
).
2.
3.
C. L.
Pekeris
,
Physical Review
112
,
1649
(
1958
).
4.
K.
Frankowski
and
C. L.
Pekeris
,
Physical Review
146
,
46
(
1966
).
5.
V.
Korobov
,
Physical Review A
61
,
064503
(
2000
).
6.
D. L.
Knirk
,
The Journal of Chemical Physics
60
,
66
(
1974
).
7.
H.
Klar
,
Journal of Physics A: Mathematical and General
18
,
1561
(
1985
).
8.
C.
Deng
,
R. Q.
Zhang
, and
D.
Feng
,
International Journal of Quantum Chemistry
45
,
385
(
1993
).
9.
R. Q.
Zhang
and
C.
Deng
,
Physical Review A
47
,
71
(
1993
).
10.
Y.
Wang
,
C.
Deng
, and
D.
Feng
,
Physical Review A
51
,
73
(
1995
).
11.
W.
Bian
and
C.
Deng
,
International Journal of Quantum Chemistry
51
,
285
(
1994
).
12.
M. I.
Haftel
and
V. B.
Mandelzweig
,
Annals of Physics
189
,
29
(
1989
).
13.
B.
Stébé
and
A.
Ainane
,
Superlattices and Microstructures
5
,
545
(
1989
).
14.
B.
Stébé
,
E.
Feddi
,
A.
Ainane
, and
F.
Dujardin
,
Physical Review B
58
,
9926
(
1998
).
15.
A.
Thilagam
,
Physical Review B
55
,
7804
(
1997
).
16.
A. I.
Bobrysheva
,
M. V.
Grodetskii
, and
V. T.
Zyukov
,
Journal of Physics C: Solid State Physics
16
,
5723
(
1983
).
17.
W.-F.
Xie
and
C.-Y.
Chen
,
Solid State Communications
107
,
439
(
1998
).
18.
W. Y.
Ruan
,
K. S.
Chan
,
H. P.
Ho
,
R. Q.
Zhang
, and
E. Y. B.
Pun
,
Physical Review B
60
,
5714
(
1999
).
19.
F. Ur
Rahman
,
R.
Zhao
,
Y. P.
Sarwono
, and
R.-Q.
Zhang
,
International Journal of Quantum Chemistry
,
e25694
(
2018
).
20.
Y. P.
Sarwono
,
F. Ur
Rahman
, and
R.-Q.
Zhang
,
New Journal of Physics
22
,
093059
(
2020
).
21.
F. Ur
Rahman
,
Y. P.
Sarwono
, and
R.-Q.
Zhang
,
AIP Advances
11
,
025228
(
2021
).
22.
Y. P.
Sarwono
,
F. Ur
Rahman
,
R.
Zhao
, and
R.-Q.
Zhang
,
Chem. J. Chinese Universities
42
,
1
(
2021
).
23.
H. M.
James
and
A. S.
Coolidge
,
The Journal of Chemical Physics
1
,
825
(
1933
).
24.
D. R.
Hartree
, in
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1928
), pp.
89
.
26.
P.
Hohenberg
and
W.
Kohn
,
Physical Review
136
,
B864
(
1964
).
27.
W.
Kohn
and
L. J.
Sham
,
Physical Review
140
,
A1133
(
1965
).
28.
R.-Q.
Zhang
,
International Journal of Quantum Chemistry
59
,
203
(
1996
).
29.
S.
Boys
,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
258
,
402
(
1960
).
30.
J.
Thijssen
,
Computational Physics
(
Cambridge University Press
,
2007
).
This content is only available via PDF.
You do not currently have access to this content.