This paper presents a chaotic jerk circuit model concerned with a stochastic fractal-fractional order α, β ∊ (0, 1] by adding external white noise to the input voltage. A new differentiation operator as the convolution of the power law is investigated. The new operators will be pointed to fractal-fractional differentiation and integration in the Riemann-Liouville (R-L) sense. Some sufficient conditions are achieved for the existence and uniqueness of solutions for considered framework by employing the Banach contraction principle. Finally, numerical simulation is provided to confirm the theoretical consequences.
REFERENCES
1.
I.
Podlubny
, Fractional differential equations
, Vol. 198
(Academic Press
, London
, 1998
).2.
K. S.
Miller
and B.
Ross
, An introduction to the fractional calculus and differential equations
(Wiley
, New York
, 1993
).3.
L.
Kexue
and P.
Jigen
, “Laplace transform and fractional differential equations
,” Appl. Math. Lett.
24
, 2019
–2023
(2011
).4.
R.
Sakthivel
, P.
Revathi
, and Y.
Ren
, “Existence of solutions for nonlinear fractional stochastic differential equations
,” Nonlinear Anal.
81
, 70
–86
(2013
).5.
N. R.
Babu
, P.
Balasubramaniam
, and K.
Ratnavelu
, “Stability analysis of a stochastic fractional order band pass filter circuit system
,” AIP Conf. Proc.
2319
, 1
–8
(2021
).6.
E. A.
Algehyne
and M.
Ibrahim
, “Fractal-fractional order mathematical vaccine model of COVID-19 under non-singular kernel
,” Chaos Soliton. Fract.
150
, 1
–10
(2021
).7.
M.
Arfan
, H.
Alrabaiah
, M. U.
Rahman
, Y.-L.
Sun
, A. S.
Hashim
, B. A.
Pansera
, A.
Ahmadian
, and S.
Salahshour
, “Investigation of fractal-fractional order model of COVID-19 in Pakistan under Atangana-Baleanu Caputo (ABC) derivative
,” Results Phys.
24
, 1
–11
(2021
).8.
H. M.
Srivastava
and K. M.
Saad
, “Numerical simulation of the fractal-fractional Ebola virus
,” Fractal. Fract.
4
, 1
–13
(2020
).9.
K. A.
Abro
, “Role of fractal-fractional derivative on ferromagnetic fluid via fractal Laplace transform: A first problem via fractal-fractional differential operator
,” Eur. J. Mech. B Fluids
85
, 76
–81
(2021
).10.
A.
Akgul
, S.
Ahmad
, A.
Ullah
, D.
Baleanu
, and E. K.
Akgul
, “A novel method for analysing the fractal fractional integrator circuit
,” Alex. Eng. J.
60
, 3721
–3729
(2021
).11.
A.
Atangana
, “Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system
,” Chaos Soliton. Fract.
102
, 396
–406
(2017
).12.
A.
Atangana
and A.
Akgul
, “On solutions of fractal fractional differential equations
,” Discrete Contin. Dyn. Syst.-S
14
, 3441
–3457
(2021
).13.
W.
Chen
, H.
Sun
, X.
Zhang
, and D.
Korosak
, “Anomalous diffusion modeling by fractal and fractional derivatives
,” Comput. Math. with Appl.
59
, 1754
–1758
(2010
).14.
J.-H.
He
, “Fractal calculus and its geometrical explanation
,” Results Phys.
10
, 272
–276
(2018
).15.
A. K.
Golmankhaneh
and D.
Baleanu
, “New derivatives on the fractal subset of real-line
,” Entropy
18
, 1
–13
(2016
).16.
A.
Atangana
, “Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?
” Chaos Soliton. Fract.
136
, 1
–38
(2020
).17.
B.
Bao
, N.
Wang
, Q.
Xu
, H.
Wu
, and Y.
Hu
, “A simple third-order memristive band pass filter chaotic circuit
,” IEEE Trans. Circuits Syst. II, Exp. Briefs.
64
, 977
–981
(2017
).18.
M. H.
Arshad
, M.
Kassas
, A. E.
Hussein
, and M. A.
Abido
, “A simple technique for studying chaos using jerk equation with discrete time sine map
,” Appl. Sci.
11
, 1
–16
(2021
).19.
J. C.
Sprott
, “Some simple chaotic jerk functions
,” Am. J. Phys
65
, 537
–543
(1997
).20.
A.
Atangana
and S.
Qureshi
, “Modeling attractors of chaotic dynamical systems with fractal-fractional operators
,” Chaos Soliton. Fract.
123
, 320
–337
(2019
).21.
J. C.
Sprott
, “A new chaotic jerk circuit
,” IEEE Trans. Circuits Syst. II Express Briefs
58
, 240
–243
(2011
).22.
X.
Mao
, Stochastic differential equations and applications
, 2
nd ed. (Woodhead publishing
, 2008
).23.
T.
Sathiyaraj
and P.
Balasubramaniam
, “Controllability of fractional higher order stochastic integrodifferential inclusions,” in Mathematical techniques of fractional-order systems
, Vol. in Advances in Nonlinear Dynamics and Chaos (ANDC), edited by A. T.
Azar
, A. G.
Radwan
, and S.
Vaidyanathan
(Elsevier
, 2018
) pp. 229
–248
.24.
T.
Sathiyaraj
and P.
Balasubramaniam
, “Controllability of fractional higher order stochastic integrodifferential systems with fractional Brow-nian motion
,” ISA Trans.
82
, 107
–119
(2018
).25.
S.
Reich
and D.
Shoikhet
, Nonlinear semigroups, fixed points, and geometry of domain in Banach spaces
(Imperial college press
, London
, 2005
).
This content is only available via PDF.
©2023 Authors. Published by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.