With the advent of science and technology, manifold data are playing novel and important roles in emerging real-life challenging problems. These Big Data pose new challenges in the realm of Statistical Machine Learning, e.g. in cluster analysis or unsupervised learning (in the machine learning parlour) of directional data. In this paper, a brief overview of the some of recent clustering methods enhanced for cylindrical data, spherical data and toroidal data are presented. A new distance-based method for clustering data on the torus is also indicated.

1.
A.
Banerjee
,
I. S.
Dhillon
,
J.
Ghosh
,
S.
Sra
,
J. Mach. Learn. Res.
6
,
134
(
2005
).
2.
A.
SenGupta
,
Bulletin of Calcutta Mathematical Society
96
,
139
(
2004
).
3.
A.
SenGupta
,
M.
Roy
,
J. Stat. Theory Pract.
15
,
1
(
2021
).
4.
A.
SenGupta
,
M.
Roy
,
Private communication
(
2022
).
5.
A.
SenGupta
,
A. K.
Chattopadhyay
,
M.
Roy
, Advances in Statistics-Theory and Applications-
Honoring the Contributions of B. C. Arnold in Statistical Science
(Eds.
I.
Ghosh
,
N.
Balakrishnan
,
H. K. T.
Ng
),
Springer
,
New York
, In Press,
347
(
2020
).
6.
F.
Cazals
,
B.
Delmas
,
T.
O’Donnell
,
19th Symposium on Experimental Algorithms
,
Sophia Antipolis
,
France
(
2021
).
8.
K.
Fujita
,
Math. Probl. Eng.
,
1
(
2017
).
9.
K.
Hornik
,
I.
Feinerer
,
M.
Kober
,
C.
Buchta
,
J. Stat. Softw.
50
,
1
(
2012
).
10.
O.
Kesemen
,
O.
Tezel
,
E.
Ozkul
,
Expert Syst. Appl.
58
,
76
(
2016
).
11.
P. C. A.
Esteban
,
L. A. G.
Escudero
,
Adv. Data Anal. Classif.
16
,
181
(
2022
).
12.
S.
Kim
,
A.
SenGupta
, In
book: Proceedings of the Pacific Rim Statistical Conference for Production Engineering
,
155
(
2018
).
13.
S. R.
Jammalamadaka
,
A.
SenGupta
,
World Scientific
,
New Jersey
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.