One of the hot materials in thermoelectric is the skutterudite CoSb3 compound, which shows excellent potential as a thermoelectric material because Sb-based skutterudite thermoelectric materials have high mobility, large atomic mass, and high electrical conductivity. The effort of substituting transition metal (Fe) or (Ni) ions at Co site is an attempt to modify the local distortion and increasing electrical conductivity. In this work, we report the synthesis of the skutterudite CoSb3 compound using a modified polyol method. We used CoCl2.6H2O, FeCl3.6H2O, NiCl2, and SbCl3 raw materials as precursors. During the process, we used polyvinylpyrrolidone (PVP) as a stabilizer. The precursors were reduced by NaBH4 in tetraethylene glycol (TEG) at 513 K in a nitrogen atmosphere with 30 minutes for holding times. The yielded products were characterized by XRD, SEM-EDX, FTIR, and electrical conductivity. From the analysis of XRD data, we found that the nanoparticles show grain size between 15 to 32 nm. The nanoparticles were mostly identified as the CoSb3 phase, and the other phase of CoSb2 was also detected. And then, from the analysis of SEM-EDX data, there was agglomeration in the samples so that the particles size become larger and unstable. The chemical bonds of samples actually in the wavenumber range below 500 cm-1. The electrical conductivity increased with increasing stoichiometry fractions of Co1-xFexSb3 (x = 0, 0.05, and 0.1) or Co1-xNixSb3 (x = 0, 0.15, and 0.2) indicating that the samples can be used as a raw material for the thermoelectric device. The values of electrical conductivity for samples lay between 103 to 104 Ω-1cm-1, which also indicates the samples were semiconductors.

1.
P.V.
Kamat
,
J. Phys. Chem. Lett.
4
,
1727
(
2013
).
2.
K.A.
Borup
,
J.
de Boor
,
H.
Wang
,
F.
Drymiotis
,
F.
Gascoin
,
X.
Shi
,
L.
Chen
,
M.I.
Fedorov
,
E.
Müller
,
B.B.
Iversen
, and
G.J.
Snyder
,
Energy Environ. Sci.
8
,
423
(
2015
).
3.
D.H.P.
Kang
,
M.
Chen
, and
O.A.
Ogunseitan
,
Environ. Sci. Technol.
47
,
5495
(
2013
).
4.
Y.
Tang
,
Thermoelectric Skutterudites: Why and How High ZT Can Be Achieved
, PhD Thesis,
California Institute of Technology
,
2016
.
5.
C.
Gayner
and
K.K.
Kar
,
Prog. Mater. Sci.
83
,
330
(
2016
).
6.
A.J.
Minnich
,
M.S.
Dresselhaus
,
Z.F.
Ren
, and
G.
Chen
,
Energy Environ. Sci.
2
,
466
(
2009
).
7.
M.
Rull-Bravo
,
A.
Moure
,
J.F.
Fernández
, and
M.
Martín-González
,
RSC Adv.
5
,
41653
(
2015
).
8.
A.
Gharleghi
and
C.-J.
Liu
,
J. Alloys Compd.
592
,
277
(
2014
).
9.
L.
Yang
,
Study of Nano-Inclusions on the Thermoelectric Properties of Cobalt Triantimonide-Based Nanocomposites
, PhD Thesis,
2012
.
10.
T.
Itoh
and
K.
Isogai
,
MRS Online Proc. Libr. Arch.
1166
, (
2009
).
11.
Haynes
,
W. M.
,
Handbook of Chemistry and Physics
94th Edition
(
CRC Press
,
2003
).
12.
K.
Upadhyay
,
N.
Goyal
, and
S.
Gautam
,
Vacuum
163
,
142
(
2019
).
13.
Nidhi
Puri
,
R.K.
Gupta
,
A.K.
Pattanaik
,
N.C.
Mehra
,
A.K.
Mahapatro
, and
R.P.
Tandon
,
Adv. Mater. Proc.
3
,
99
(
2018
).
14.
M.U.
Kumar
,
R.
Swetha
, and
L.
Kumari
,
J. Electron. Mater.
50
,
1735
(
2021
).
15.
R.
Swetha
,
M.U.
Kumar
, and
L.
Kumari
, in (Kerala, India, 2019), p.
020104
.
16.
M.U.
Kumar
,
R.
Swetha
,
M.V.
Murugendrappa
, and
L.
Kumari
, in (Kerala, India,
2019
), p.
020054
.
17.
O.
Ivanov
,
O.
Maradudina
, and
R.
Lyubushkin
,
Mater. Charact.
99
,
175
(
2015
).
18.
V.
Tsakiris
,
W.
Kappel
, and
G.
Alecu
,
J. Optoelectron. Adv. Mater.
13
,
1176
(
2011
).
19.
M.A.
Omar
,
Elementary Solid State Physics: Principles and Applications
(
Pearson Education India
,
1975
).
20.
C.
Kittel
,
Introduction to Solid State Physics, Eight
(
John Wiley & Sons, Inc
,
United States
,
2005
).
This content is only available via PDF.
You do not currently have access to this content.