Hydrogel products have been used in many pharmaceutical applications such as wound dressing products. In this study, the stability of Gelzan, Kelcogel, and Carrageenan hydrogels was examined. The dimension stability of hydrogels at 20 °C for 27 days, degradation in pseudo-extracellular fluid for 24h, 48h, and 72h, water vapor transmission rates (WVTRs) at different humidity and compression performances of the hydrogels were measured. Gelzan hydrogel exhibits optimum dimension stability after 27 days at 20 °C with a decrease in mass at 74%, followed by Kelcogel at 83% and Carrageenan at 91%. The degradation of Gelzan hydrogel demonstrates the minimal value after 72h at 22.7% with WVTR value at 1816 g m−2 d−1 (50% RH), and this could be due to the strong interaction between polymer-polymer in the matrix of hydrogel and limiting the breakage of the bonding and water to diffuse through the hydrogel films. The strong interaction, i.e., hydrogen bonding, ionic bonding, and van der Waals force of the Gelzan hydrogel is further supported by the optimum compressive stress and compressive strain of the latter at 6.55 ± 0.14 kPa and 7.53 ± 0.4 kPa, respectively than Kelcogel and Carrageenan hydrogels. In conclusion, it shows that the Gelzan hydrogels were the most durable hydrogel and offered promising properties to be used in pharmaceutical applications.

1.
M. Z.
Muktar
,
W. I. W.
Ismail
,
S. I. A.
Razak
,
M. H.
Razali
and
K. A. M.
Amin
,
ASM Sci. J. Special Issue
2018,
1
,
166
(
2018
).
2.
C.
Fatin
,
A.
Kasmi
,
A.
Zailani
,
A.
Jannah
,
A.
Bakar
,
K.
Anuar
,
M.
Amin
,
W. M.
Org
,
F. A.
Kasmi
and
M. A.
Zailani
,
J. Pure Appl. Microbiol
,
14
, (
2020
).
3.
J. T.
Oliveira
,
L.
Martins
,
R.
Picciochi
,
P. B.
Malafaya
,
R. A.
Sousa
,
N. M.
Neves
,
J. F.
Mano
and
R. L.
Reis
,
Journal of Biomedical Materials Research Part A
,
93
,
852
(
2010
).
4.
K. M.
Zia
,
S.
Tabasum
,
M. F.
Khan
,
N.
Akram
,
N.
Akhter
,
A.
Noreen
and
M.
Zuber
,
Int J Biol Macromol
,
109
,
1068
(
2018
).
5.
Giavasis
,
L. M. Harvey
and
B.
McNeil
,
Crit Rev Biotechnol
,
20
,
177
(
2000
).
6.
J.
Necas
and
L.
Bartosikova
,
Vet Med (Praha)
58
, (
2013
).
7.
K. M.
Zia
,
S.
Tabasum
,
M.
Nasif
,
N.
Sultan
,
N.
Aslam
,
A.
Noreen
and
M.
Zuber
,
Int J Biol Macromol
,
96
,
282
(
2017
).
8.
S. S.
Mohd
,
M. A. A.
Abdullah
and
K. A. Mat
Amin
,
J Bioact Compat Polym
,
31
,
648
(
2016
).
9.
C. S. F.
Picone
and
R. L.
Cunha
,
Carbohydr Polym
,
84
,
662
(
2011
).
10.
J. F.
Bradbeer
,
R.
Hancocks
,
F.
Spyropoulos
and
I. T.
Norton
,
Food Hydrocoll
,
43
,
501
(
2015
).
11.
J.
Horinaka
,
K.
Kani
,
Y.
Hori
and
S.
Maeda
,
Biophys Chem
,
111
,
223
(
2004
).
12.
M.
Cassanelli
,
V.
Prosapio
,
I.
Norton
and
T.
Mills
,
Food Hydrocoll
,
82
,
346
(
2018
).
13.
M.
Tako
,
Advances in Bioscience and Biotechnology
,
6
,
22
(
2015
).
14.
M.
Matsuo
,
T.
Tanaka
and
L.
Ma
,
Polymer (Guildf)
,
43
,
5299
(
2002
).
15.
S.
Ikeda
,
V. J.
Morris
and
K.
Nishinari
,
Biomacromolecules
,
2
,
1331
(
2001
).
16.
Y.
Nitta
,
J Biol Macromol
,
5
,
47
(
2005
).
17.
R.
Yegappan
,
V.
Selvaprithiviraj
,
S.
Amirthalingam
, and
R.
Jayakumar
,
Carbohydr Polym
,
198
,
385
(
2018
).
18.
S.
Seyedi
,
A.
Koocheki
,
M.
Mohebbi
and
Y.
Zahedi
,
Carbohydr Polym
,
101
,
349
(
2014
).
19.
N.
Roy
,
N.
Saha
,
P.
Humpolicek
and
P.
Saha
,
Soft Mater
,
8
,
338
(
2010
).
20.
D.
Queen
,
J. D. S.
Gaylor
,
J. H.
Evans
,
J. M.
Courtney
and
W. H.
Reid
,
Biomaterials
,
8
,
367
(
1987
).
21.
N. J. M.
Sebria
and
K. A. M.
Amin
,
International Journal of Applied Chemistry
,
12
,
483
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.