The paper investigates the issue of developing a computational algorithm for finding a numerical solution to the shallow water equation system at a one-dimensional level (the Saint-Venant equation) and its implementation on the example of the Big Almaty Canal (in what follows the BAC). The algorithm is based on the use of an implicit upwind difference scheme. The theorem on exponential stability of the difference scheme is proved. The computational algorithm is based on the well-known matrix sweep method. By means of the proposed computational algorithm, calculations of the water level and velocity on the BAC section (10000 m) located in the Almaty region were carried out. The results of the numerical calculation were compared with real data. The efficiency of the proposed algorithm in time is established. Exponential stability of the numerical solution of the Saint-Venant equation is numerically confirmed.

1.
O. F.
Vasilev
,
S. K.
Godunov
,
N. A.
Pritvits
,
T. A.
Temnoeva
,
I. L.
Friazinova
and
S. M.
Shugrin
,
Dokladi AN SSSR
,
1963
,
151
(
3
), pp.
525
527
. Available at: http://mi.mathnet.ru/dan28337.
2.
A.
Hayat
and
P.
Shang
,
A quadratic lyapunov function for saint-venant equations with arbitrary friction and space-varying slope
. (
Automatica
100
,
2019
), pp.
52
60
DOI:
3.
S. K.
Godunov
,
Equations of Mathematical Physics
(
Nauka
,
Moscow
,
1979
),
392
p. http://eqworld.ipmnet.ru/ru/library/books/Godunov1979ru.djvu.
4.
G.
Bastin
and
J.M.
Coron
,
Stability and Boundary Stabilization of 1-D Hyperbolic Systems
(
Itemirkhauser Basel, Springer, International Publishing Switzerland
,
2016
),
307
. https://www.springer.com/gp/book/9783319320601.
5.
S.
GoEttlich
and
P.
Schillen
,
European Journal of Control
,
2017
)
35
,
11
18
. DOI: .
6.
G.
Bastin
,
J. M.
Coron
,
Systems & Control Letters
104
,
66
71
(
2017
). DOI: .
7.
G.
Bastin
,
J. M.
Coron
and
B.D.
Novel
,
On lyapunov stability of linearised saint-venant equations for a sloping channel
.
Networks and Heterogeneous Media
4
,
177
187
(
2009
). DOI: .
8.
C. S.
Peskin
,
Acta Numerica.
11
,
479
517
, (
2002
), DOI: .
9.
K. N.
Volkov
,
Realizatsiia skhemy rasschepleniia na raznesennoi setke dlia rascheta nestatsionarnykh techenii viazkoi neszhimaemoi zhidkosti. Vychislitelnye metody i programmirovaniia
,
6
(
1
),
269
282
. (
2005
). http://mi.mathnet.ru/vmp648
10.
R. D.
Aloev
,
Z. K.
Eshkuvatov
,
S. O.
Davlatov
and
N. M. A. Nik
Long
,
Computers and Mathematics with Applications
,
68
,
1194
1204
(
2014
). DOI:
11.
A. M.
Blokhin
,
R. D.
Aloev
,
M. U.
Hudayberganov
,
American Journal of Numerical Analysis
2
,
85
89
(
2014
)
12.
R. D.
Aloev
,
Z. K.
Eshkuvatov
,
M. U.
Khudoyberganov
,
N. M. A. Nik
Long
,
Applied Mathematics
,
9
,
789
805
(
2018
). DOI:
13.
R. D.
Aloev
,
Z. K.
Eshkuvatov
,
M. U.
Khudoyberganov
,
D. E.
Nematova
,
Mathematics and Statistics
,
7
,
82
89
(
2019
). DOI:
14.
A. S.
Berdyshev
,
Kh. Kh.
Imomnazarov
,
Jian-Gang
Tang
,
A.
Mikhailov
,
Open Computer Science
,
1
,
208
212
, (
2016
).
15.
A. S.
Berdyshev
,
Kh. Kh.
Imomnazarov
,
Jian-Gang
Tang
,
S.
Tuychieva
,
Central European Journal of Engineering.
6
(
1
),
322
325
, (
2016
).
16.
A. A.
Samarskii
,
E. S.
Nikolaev
,
Metody resheniia setochnykh uravnenii
. (
Nauka
,
Moscow
,
2017
, 1978532. Available at: http://samarskii.ru/books/book1978.pdf.
17.
R.
Aloev
,
A.
Berdyshev
,
A.
Akbarova
,
Zh.
Baishemirov
,
Eastern-European Journal of Enterprise Technologies
,
4
(
4(112
)),
47
56
, (
2021
). doi: .
This content is only available via PDF.
You do not currently have access to this content.