Sheep are livestock that ranks third after cows and goats that meet the needs of meat for the people of Indonesia, therefore it is very important to know the health condition of the sheep that will be consumed later. Sick sheep can be identified based on the sheep’s facial expressions. In this study the authors applied VGG19 to identify sick sheep face. System performance is measured based on the value of accuracy, precision, recall, and F-Measure. After testing starting from 50 epochs to 200 with a learning rate (0.0001), and trying various optimizers such as Adamax, SGD (Stochastic Gradient Descent), and Adam, the results show an accuracy value of 89.4% and an average precision of 65.6%, recall 81% and f-measure 69.7%, with an mcc value of 0.44 using epoch 100, learning rate 0.0001, and the Adamax optimizer. These values are influenced by the dataset of the training image of 800 images, the validation image of 229 images, and the test image of 144 images. In testing for search the best side of the sheep’s face image to be identified by the system, get the results that the sheep’s face image from the front side gets an accuracy value of 94% with an average precision of 49%, recall 48% and f-measure 48% with an mcc value. -0.03.

1.
Sudarmono
,
A. S.
, &
Sugeng
,
Y. B.
(
2011
).
Beternak domba
.
Penebar Swadaya Grup.
2.
Hanif
Gusman
. (
2020
).
Hewan Kurban dan Rendahnya Konsumsi Daging di Indonesia
.
Tersedia di
https://tirto.id/hewan-kurban-dan-rendahnya-konsumsi-daging-di-indonesia-fUm8
3.
Lu
,
Y.
,
Mahmoud
,
M.
, &
Robinson
,
P.
(
2017
, May).
Estimating sheep pain level using facial action unit detection
.
In 2017 12th IEEE International.
4.
Noor
,
A.
,
Zhao
,
Y.
,
Koubâa
,
A.
,
Wu
,
L.
,
Khan
,
R.
, &
Abdalla
,
F. Y.
(
2020
).
Automated sheep facial expression classification using deep transfer learning
.
Computers and Electronics in Agriculture
,
175
,
105528
.
5.
Ker
,
J.
,
Wang
,
L.
,
Rao
,
J.
, &
Lim
,
T.
(
2017
).
Deep learning applications in medical image analysis
.
Ieee Access
,
6
,
9375
9389
.
6.
Hakim
,
R. F.
(
2018
).
PENERAPAN DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK UNTUK 7
.
KLASIFIKASI CITRA WAYANG PUNAKAWAN.
7.
Munir
,
K.
,
Elahi
,
H.
,
Ayub
,
A.
,
Frezza
,
F.
,
dan Rizzi
,
A.
(
2019
).
Cancer Diagnosis Using Deep Learning: A Bibliographic Review
.
Cancers
,
11
(
9
),
1235
.
8.
Russakovsky
,
Olga
et al.
2015
. “
ImageNet Large Scale Visual Recognition Challenge
.”
International Journal of Computer Vision
115
(
3
):
211
52
.
9.
Carvalho
,
T.
,
De Rezende
,
E. R.
,
Alves
,
M. T.
,
Balieiro
,
F. K.
, &
Sovat
,
R. B.
(
2017
, December).
Exposing computer generated images by eye’s region classification via transfer learning of VGG19 CNN
.
In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)
(pp.
866
870
).
IEEE
.
10.
Shaha
,
M.
, &
Pawar
,
M.
(
2018
, March).
Transfer learning for image classification
.
In 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA)
(pp.
656
660
).
IEEE
.
11.
Al Rivan
,
M. E.
, &
Yohannes
,
Y.
(
2019
).
Klasifikasi Mamalia Berdasarkan Bentuk Wajah Dengan K-NN Menggunakan Fitur C.A.S Dan H.O.G. JATISI
(
Jurnal Teknik Informatika dan Sistem Informasi)
,
5
(
2
),
169
176
.
12.
McLennan
,
K.
, &
Mahmoud
,
M.
(
2019
).
Development of an automated pain facial expression detection system for sheep (ovis aries)
.
Animals
,
9
(
4
),
196
.
13.
Salama
,
A.
,
Hassanien
,
A. E.
, &
Fahmy
,
A.
(
2019
).
Sheep Identification Using a Hybrid Deep Learning and Bayesian Optimization Approach
.
IEEE Access
,
7
,
31681
31687
.
14.
Wirtjes
,
J. S.
(
2019
).
Pengenalan Ekspresi Wajah Menggunakan Convolutional Neural Network (CNN)
.
15.
Setiawan
,
W.
(
2019
).
PERBANDINGAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI FUNDUS
.
Jurnal Simantec
,
7
(
2
),
48
53
.
16.
Nana
Hermana
, A.,
Rosmala
,
D.
, &
Gustiana
Husada
, M. (
2021
, January).
Transfer Learning for Classification of Fruit Ripeness Using V.G.G16
.
In 2021 The 4th International Conference on Computers in Management and Business
(pp.
139
146
).
17.
Feriawan
,
J.
, &
Swanjaya
,
D.
(
2020
, August).
Perbandingan Arsitektur Visual Geometry Group dan MobileNet Pada Pengenalan Jenis Kayu
.
In Prosiding S.E.MNAS INOTEK (Seminar Nasional Inovasi Teknologi)
(Vol.
4
, No.
3
, pp.
185
190
).
18.
Simonyan
,
Karen.
,
Andrew
Zisserman
.
Very Deep Convolutional Networks for Large-Scale Image Recognition
. arXiv:1409.1556,
2015
.
This content is only available via PDF.
You do not currently have access to this content.