Corn husk waste possesses a relatively high silica content which can be utilized as the raw material to produce useful silica compounds. In this study, natural silica aerogel was synthesized from corn husk using a combination of sol-gel and cationic exchange methods under ambient pressure drying conditions with the help of MTCS as a surface modification agent. This study aims to determine the feasibility of the synthesis method and the physical properties of the as-synthesized silica aerogel. The purity and crystallinity of silica aerogels were analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD), while its morphology was examined using Scanning Electron Microscope (SEM). The optimum synthesizes parameters of silica aerogel were observed at cation resin to sodium silicate filtrate ratio of 2:1, with the addition of 0.4 ml MTCS and drying under ambient pressure at 60°C for 4 hours, continued by 120°C for 2 hours. The as-synthesized silica aerogel possesses high purity, with an amorphous crystal structure and yield of 46.44 wt.%. Silica aerogel also has a porous morphology with pore diameters ranging from 1 to 3 μm.

1.
E.
Epstein
,
Annual Review of Plant Physiology and Plant Molecular Biology.
50
,
641
664
(
1999
).
2.
A.
Dahliyanti
,
I. D.
Widharyanti
,
C. A.
Curie
, “
Recovery and characterization of naturally occurring silicon dioxide from corn wastes
,”
AIP Conference Proceedings
2085
,
020048
(
2019
).
3.
J.
Fricke
,
Journal of Non-Crystalline Solids
100
,
169
173
(
1988
).
4.
A.
Lamy-Mendes
,
R. F.
Silva
,
L.
Duraes
,
Journal of Material Chemistry A
6
,
1340
1369
(
2018
).
5.
C. J.
Lee
,
G. S.
Kim
,
S. H.
Hyun
,
Journal of Materials Science
37
,
2237
2241
(
2002
).
6.
J. L.
Gurav
,
I.
Jung
,
H.
Park
,
E.
Kang
,
D. Y.
Nadargi
,
Journal of Nanomaterials
2010
,
409310
(
2010
).
7.
R.
Baetens
,
B. P.
Jelle
,
A.
Gustavsen
,
Energy and Buildings
43
,
761
769
(
2011
).
8.
M. V.
Khedkar
,
S. B.
Somvanshi
,
A. V.
Humbe
,
K. M.
Jadhav
,
Journal of Non-Crystalline Solids
511
,
140
146
(
2019
).
9.
T. Y.
Wei
,
T. F.
Chang
,
S. Y.
Lu
,
Journal of American Ceramic Society
90
,
2003
2007
(
2007
).
10.
11.
G. M.
Pajonk
,
Colloid Polymer Science
281
,
637
51
(
2003
)
12.
A. V.
Rao
and
R. R.
Kalesh
,
Science and Technology of Advanced Materials
4
,
509
15
(
2003
).
13.
W.
Zhang
,
L.
Shi
,
Z.
Li
,
Y.
Luo
,
Q.
Liu
,
R.
Huang
,
Journal of Sol-Gel Science and Technology
89
,
448
457
(
2019
).
14.
N.
Asim
,
M.
Badiei
,
M. A.
Alghoul
,
M.
Mohammad
,
A.
Fudholi
,
M.
Akhtaruzzaman
,
N.
Amin
,
K.
Sopian
,
Industrial and Engineering Chemistry Research
58
,
17621
17645
(
2019
).
15.
M. A.
Hasan
,
R.
Sangashetty
,
A. C. M.
Esther
,
S. B.
Patil
,
B. N.
Sherikar
,
A.
Dey
.
Journal of The Institution of Engineers (India): Series D
98
,
297
304
(
2017
).
16.
Q.
Feng
,
K.
Chen
,
D.
Ma
,
H.
Lin
,
Z.
Liu
,
S.
Qin
,
Y.
Luo
,
Colloids and Surfaces A: Physicochemical and Engineering Aspects
539
,
399
406
(
2018
).
17.
R.
Al-Oweini
and
H.
El-Rassy
,
Journal of Molecular Structure
919
,
140
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.