EBT3 radiochromics film is a dosimeter commonly used in radiation oncology because it has properties equivalent to tissue or water, high spatial resolution, low dependence on energy and dose. Consequently, the accuracy and precision during the dose reading procedure of the EBT3 must be excellent accomplished during radiation therapy treatment. The objective was to evaluate the dosimetry of the EBT3 radiochromic using the transmission and reflection mode scanning method for radiation therapy. This study used an EBT3 radiochromic film with a size of 2.5×3 cm² and irradiated with 6 MV photons and 6, 8, 10, 12, and 15 MeV electrons. The EBT3 film irradiation process used a surface axis distance (SAD) of 100 cm, solid water phantom for the scattering medium, and an irradiation field of 10×10 cm². Each EBT3 film was irradiated using prescribed energy at doses of 0, 100, 200, 300, 400, 500, 600, and 700 cGy. The digitalization process of EBT3 film used an Epson V850 Pro flatbed with a resolution of 72 dpi, 48-bit RGB, no correction color, using reflection and transmission modes. The pixel value reading of the EBT3 film used Image-J to obtain a calibrating curve for EBT3 film in each photon and electron energy range. The results showed that the transmission mode had a higher accuracy than the reflection mode for all dose and energy ranges, while the reflection mode had a higher sensitivity than the transmission mode.

1.
L.
Xing
et al,
Phys. Med. Biol.
, vol.
44
, no.
2
, pp.
463
478
(
1999
).
2.
X. R.
Zhu
,
P. A.
Jursinic
,
D. F.
Grimm
,
F.
Lopez
,
J. J.
Rownd
, and
M. T.
Gillin
,
Med. Phys
., vol.
29
, no.
8
, pp.
1687
1692
(
2002
).
3.
N. L.
Childress
,
M.
Salehpour
,
L.
Dong
,
C.
Bloch
,
R. A.
White
, and
I. I.
Rosen
,
Med. Phys.
, vol.
32
, no.
2
, pp.
539
548
(
2005
).
4.
S.
Pai
et al,
Med. Phys.
, vol.
34
, no.
6
, pp.
2228
2258
(
2007
).
5.
M.
Williams
and
P.
Metcalfe
,
AIP Conf. Proc.
, vol.
1345
, no.
1
, pp.
75
99
(
2011
).
6.
L.
Karsch
et al,
Med. Phys.
, vol.
39
, no.
5
, pp.
2447
2455
(
2012
).
7.
A.
Rink
,
I. A.
Vitkin
, and
D. A.
Jaffray
,
Med. Phys.
, vol.
34
, no.
2
, pp.
458
463
(
2007
).
8.
T.
Kairn
,
N.
Hardcastle
,
J.
Kenny
,
R.
Meldrum
,
W. A.
Tomé
, and
T.
Aland
,
Australas. Phys. Eng. Sci. Med.
, vol.
34
, no.
3
, pp.
333
343
(
2011
).
9.
J.
Sorriaux
et al,
Phys. Medica PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. AIFB
, vol.
29
, no.
6
, pp.
599
606
(
2013
).
10.
G.
Massillon-JL
,
S.-T.
Chiu-Tsao
,
I.
Domingo-Munoz
, and
M. F.
Chan
,
Int. J. Med. Phys. Clin. Eng. Radiat. Oncol.
, vol.
1
, no.
2
, Art. no.
2
(
2012
).
11.
C. L.
Deufel
and
J. A.
Antolak
,
J. Appl. Clin. Med. Phys.
, vol.
14
, no.
5
, pp.
115
126
(
2013
).
12.
W. L.
McLaughlin
,
Chen
Yundong
,
C. G.
Soares
,
A.
Miller
,
G.
Van Dyk
, and
D. F.
Lewis
,
Nucl. Instrum. Methods Phys. Res. Sect. A
, vol.
302
, no.
1
, pp.
165
176
(
1991
).
13.
W.
Mclaughlin
,
J.
Humphreys
,
D.
Hocken
, and
W.
Chappas
,
Radiochromic dosimetry for validation and commissioning of industrial radiation processes
, (
1988
).
14.
N.
Tomic
and
S.
Devic
,
Radiochromic Film Dosimetry for Radiology
, in Handbook of X-ray Imaging,
CRC Press
, (
2017
).
15.
C.
Fiandra
et al,
Med. Phys.
, vol.
33
, no.
11
, pp.
4314
4319
(
2006
).
16.
S.
Asgharizadeh
et al.,
Brachytherapy
, vol.
14
, no.
4
, pp.
578
585
(
2015
).
17.
S. M.
Gafar
and
M. A.
El-Ahdal
,
Dyes Pigments
, vol.
114
(
2015
).
18.
Ashland
,
“GafchromicTM Radiotherapy Films.”
www.ashland.com/industries/medical/radiotherapy-films (accessed Aug. 26, 2021).
19.
A. L.
Palmer
,
D. A.
Bradley
, and
A.
Nisbet
,
J. Appl. Clin. Med. Phys.
, vol.
16
, no.
2
, p.
5141
(
2015
).
20.
D. F.
Lewis
and
M. F.
Chan
,
Med. Phys.
, vol.
43
, no.
2
, pp.
643
649
(
2016
).
21.
N.
Tagiling
,
R. Ab
Rashid
,
S. N. A.
Azhan
,
N.
Dollah
,
M.
Geso
, and
W. N.
Rahman
,
Heliyon
, vol.
4
, no.
10
, p.
e00864
(
2018
).
22.
H.
Alnawaf
,
P.
Yu
, and
M.
Butson
,
J. Appl. Clin. Med. Phys. Am. Coll. Med. Phys.
, vol.
13
, p.
3957
(
2012
).
23.
L.
Menegotti
,
A.
Delana
, and
A.
Martignano
,
Med. Phys.
, vol.
35
, no.
7
, pp.
3078
3085
(
2008
).
24.
S.
Devic
et al,
Med. Phys.
, vol.
31
, no.
9
, pp.
2392
2401
(
2004
).
25.
S.
Devic
et al,
Med. Phys.
, vol.
32
, no.
7
, pp.
2245
2253
(
2005
).
26.
P.
Papaconstadopoulos
,
G.
Hegyi
,
J.
Seuntjens
, and
S.
Devic
,
Med. Phys.
, vol.
41
, no.
12
, p.
122101
(
2014
).
27.
G.
Ataei
et al,
J. Med. Signals Sens.
, vol.
9
, no.
3
, pp.
204
210
(
2019
).
28.
V. Casanova
Borca
et al,
J. Appl. Clin. Med. Phys.
, vol.
14
, no.
2
, p.
4111
(
2013
).
29.
S.
Ulya
,
W. E.
Wibowo
,
N.
Nuruddin
, and
S. A.
Pawiro
,
J. Phys. Conf. Ser.
, vol.
851
, p.
012023
(
2017
).
This content is only available via PDF.
Published by AIP Publishing.
You do not currently have access to this content.