Diabetic retinopathy (DR) is a leading disease that cause impaired vision with a consequence of permanent blindness if it is undiagnosed and untreated at the early stages. Alas, DR often has no early warning sign and may cause no symptoms. Particularly, recent statistics recorded that about 382 million individuals globally, with the number predicted to rise to 592 million by 2030 are suffers from DR. Due to the obvious large number of DR patients and limited medical resources in particular areas, patients with DR may not be treated in time, therefore missing out the best treatment options and eventually leading to irreversible vision loss. Unfortunately, a manual diagnosis to examine DR is tedious, time consuming, and error-prone, besides the consequences of manual interpretation which is highly dependent on the medical expert experiences to identify the presence of small features and significance of DR. This manual method opens to the inconsistency of the diagnosis. Thus, Automated Diabetic Retinopathy Detection aims to reduce the burden on ophthalmologists and mitigate diagnostic inconsistencies between manual readers by classifying DR stages using previous DR images with stages labels using Deep Learning. Generative Adversarial Network (GAN) is one of the major improvement of deep learning with potential to enhance the performance of automated detection significance of DR. Two different experiments were conducted and compared resulting in the best result with GAN evaluated by Frechet Inception Distance (FID), precision and recall.

1.
U.
O’Colmain
,
C.
MacEwen
, and
W. O. H.
Ho
, “
Diabetic Retinopathy (Eye disease
),” netdoctor,
2014
. [Online]. Available: https://www.netdoctor.co.uk/conditions/diabetes/a833/diabetic-retinopathy-eye-disease/.
2.
S.
Haneda
and
H.
Yamashita
, “
International clinical diabetic retinopathy disease severity scale
,”
Nippon Rinsho. Japanese J. Clin. Med.
,
2010
.
3.
Y. S.
Kanungo
,
B.
Srinivasan
, and
S.
Choudhary
, “
Detecting diabetic retinopathy using deep learning
,”
RTEICT 2017 - 2nd IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. Proc
., vol.
2018–Janua
, pp.
801
804
,
2017
.
4.
Y. H.
Li
,
N. N.
Yeh
,
S. J.
Chen
, and
Y. C.
Chung
, “
Computer-Assisted Diagnosis for Diabetic Retinopathy Based on Fundus Images Using Deep Convolutional Neural Network
,”
Mob. Inf. Syst
., vol.
2019
, no.
1
,
2019
.
5.
K.
Boyd
, “
What is Diabetic Retinopathy?
,”
American Academy of Ophthalmology
,
2020
. [Online]. Available: https://www.aao.org/eye-health/diseases/what-is-diabetic-retinopathy.
6.
R.
Gargeya
and
T.
Leng
, “
Automated Identification of Diabetic Retinopathy Using Deep Learning
,”
Ophthalmology
, vol.
124
, no.
7
, pp.
962
969
,
2017
.
7.
S.
Wan
,
Y.
Liang
, and
Y.
Zhang
, “
Deep convolutional neural networks for diabetic retinopathy detection by image classification
,”
Comput. Electr. Eng.
, vol.
72
, pp.
274
282
,
2018
.
8.
V.
Gulshan
et al, “
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
,”
JAMA - Journal of the American Medical Association
, vol.
316
, no.
22
. pp.
2402
2410
,
2016
.
9.
J.
Sahlsten
et al, “
Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading
,”
Sci. Rep.
, vol.
9
, no.
1
, pp.
1
11
,
2019
.
10.
Olle G.
Holmberg
et al, “
Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy
,”
Nat. Mach. Intell.
,
2020
.
11.
D.
Shen
,
G.
Wu
,
H.
Suk
, and
C.
Engineering
, “
Deep Learning in Medical Image Analysis
,”
Annu. Revis. Biomed. Eng.
, pp.
221
248
,
2017
.
12.
Z.
Wu
et al, “
Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network
,”
Artif. Intell. Med.
, vol.
108
, no.
January
, p.
101936
,
2020
.
13.
M.
Mateen
,
J.
Wen
,
N.
Nasrullah
,
S.
Sun
, and
S.
Hayat
, “
Exudate Detection for Diabetic Retinopathy Using Pretrained Convolutional Neural Networks
,”
Complex. Hindawi
, vol.
2020
, p.
11
,
2020
.
14.
E.
AbdelMaksoud
,
S.
Barakat
, and
M.
Elmogy
, “
Diabetic Retinopathy Grading System Based on Transfer Learning
,” arXiv,
2020
.
15.
N.
Silberman
,
K.
Ahlrich
,
R.
Fergus
, and
L.
Subramanian
, “
Case for automated detection of diabetic retinopathy
,”
AAAI Spring Symp. - Tech. Rep.
, vol.
SS-10-01
, pp.
85
90
,
2010
.
16.
H.
Pratt
,
F.
Coenen
,
D. M.
Broadbent
,
S. P.
Harding
, and
Y.
Zheng
, “
Convolutional Neural Networks for Diabetic Retinopathy
,”
Procedia Comput. Sci.
, vol.
90
, no.
July
, pp.
200
205
,
2016
.
17.
P.
Junjun
,
Y.
Zhifan
,
S.
Dong
, and
Q.
Hong
, “
Diabetic Retinopathy Detection Based on Deep Convolutional Neural Networks for Localization of Discriminative Regions
,”
Proc. - 8th Int. Conf. Virtual Real. Vis. ICVRV 2018
, pp.
46
52
,
2018
.
18.
R. R, N. B. S, R. J. J, R. S. S, and S. M. D
, “
Diabetic retinopathy detection using machine learning
,”
Int. J. Eng. Res. Technol.
, vol.
9
, no.
6
, pp.
103
107
,
2020
.
19.
F.
Alzami
, Abdussalam,
R. A.
Megantara
,
A. Z.
Fanani
, and Purwanto, “
Diabetic retinopathy grade classification based on fractal analysis and random forest
,”
Proc. - 2019 Int. Semin. Appl. Technol. Inf. Commun. Ind. 4.0 Retrosp. Prospect. Challenges, iSemantic 2019
, pp.
272
276
,
2019
.
20.
D. U. N.
Qomariah
,
H.
Tjandrasa
, and
C.
Fatichah
, “
Classification of diabetic retinopathy and normal retinal images using CNN and SVM
,”
Proc. 2019 Int. Conf. Inf. Commun. Technol. Syst. ICTS 2019
, pp.
152
157
,
2019
.
21.
A. R.
Chowdhury
,
T.
Chatterjee
, and
S.
Banerjee
, “
A Random Forest classifier-based approach in the detection of abnormalities in the retina
,”
Med. Biol. Eng. Comput.
, vol.
57
, no.
1
, pp.
193
203
,
2019
.
22.
O.
Perdomo
,
S.
Otalora
,
F.
Rodríguez
,
J.
Arevalo
, and
F. A.
González
, “
A Novel Machine Learning Model Based on Exudate Localization to Detect Diabetic Macular Edema
,”
Iowa Res.
Online, pp.
137
144
,
2017
.
23.
B.
Xin
,
W.
Yang
,
Y.
Geng
,
S.
Chen
,
S.
Wang
, and
L.
Huang
, “
Private FL-GAN: Differential privacy synthetic data generation based on federated learning
,”
ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc
., vol.
2020–May
, pp.
2927
2931
,
2020
.
24.
J. de la
Torre
,
D.
Puig
, and
A.
Valls
, “
Weighted kappa loss function for multi-class classification of ordinal data in deep learning
,”
Pattern Recognit. Lett.
, vol.
105
, pp.
144
154
,
2018
.
25.
S. M. S.
Islam
,
M. M.
Hasan
, and
S.
Abdullah
, “
Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images
,” arXiv, pp.
1
12
,
2018
.
26.
X.
Li
,
T.
Pang
,
B.
Xiong
,
W.
Liu
,
P.
Liang
, and
T.
Wang
, “
Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification
,”
Proc. - 2017 10th Int. Congr. Image Signal Process. Biomed. Eng. Informatics, CISP-BMEI 2017
, vol.
2018–Janua
, no.
978
, pp.
1
11
,
2018
.
27.
J.
Gao
,
C.
Leung
, and
C.
Miao
, “
Diabetic Retinopathy Classification using an Efficient Convolutional Neural Network
,”
IEEE Int. Conf. Agents
, no.
April
,
2019
.
28.
Y.
Zhou
,
B.
Wang
,
X.
He
,
S.
Cui
, and
L.
Shao
, “
DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images
,”
IEEE J. Biomed. Heal. Informatics
, pp.
1
10
,
2020
.
29.
I.
Goodfellow
et al, “
Generative adversarial networks
,”
Commun. ACM
, vol.
63
, no.
11
, pp.
139
144
,
2014
.
30.
D.
Bhattacharya
,
S.
Banerjee
,
S.
Bhattacharya
,
B. U.
Shankar
, and “
S.
Mitra
, “Gan-based novel approach for data augmentation with improved disease classification,” in
Advancement of Machine Intelligence in Interactive Medical Image Analysis
,
Springer 2020
,
2020
, pp.
229
239
.
31.
H.
Zhao
,
H.
Li
,
S.
Maurer-Stroh
, and
L.
Cheng
, “
Synthesizing retinal and neuronal images with generative adversarial nets
,”
Med. Image Anal.
, vol.
49
, pp.
14
26
,
2018
.
32.
G.
Huang
,
Z.
Liu
,
L.
Van Der Maaten
, and
K. Q.
Weinberger
, “
Densely connected convolutional networks
,”
Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017
, vol.
2017–Janua
, pp.
2261
2269
,
2017
.
33.
S.
Kaplan
,
L.
Lensu
,
L.
Laaksonen
, and
H.
Uusitalo
, “
Evaluation of Unconditioned Deep Generative Synthesis of Retinal Images
,”
Int. Conf. Adv. Concepts Intell. Vis. Syst.
,
2020
.
34.
M.
Heusel
,
H.
Ramsauer
,
T.
Unterthiner
,
B.
Nessler
, and
S.
Hochreiter
, “
GANs trained by a two time-scale update rule converge to a local Nash equilibrium
,”
Adv. Neural Inf. Process. Syst.
, vol.
2017–Decem
, no.
Nips
, pp.
6627
6638
,
2017
.
35.
A.
Borji
, “
Pros and cons of GAN evaluation measures
,”
Comput. Vis. Image Underst.
, vol.
179
, pp.
41
65
,
2019
.
This content is only available via PDF.
You do not currently have access to this content.