This article presents a new iterative scheme to find the roots of nonlinear equations. We use composition technique and weight function procedure to construct new three-step eighth order method. Several iterative methods have recently been proposed for finding the roots of a nonlinear equation that requires the evaluation of the second and higher-order derivatives of the function, which increases the processing cost. We have introduced a second and higher derivative-free method, which requires three evaluations of the function and one evaluation of its first derivative. In fact, the new eighth-order method has a maximum computational efficiency of 1.682 in the sense of Kung-Traub’s optimality conjecture. We have presented an extensive theoretical convergence analysis of new eighth order method using Taylor developments. Numerical tests are presented with several examples to confirm the applicability and to justify the rapid convergence of the current technique. Finally, we confirm on the basis of obtained results that new proposed method has better absolute residual errors as compared to the other existing standard methods of the same order.

1.
G.
Mahesh
,
G.
Swapna
and
K.
Venkateshwarlu
,
An Iterative Method for Solving Non-linear Transcendental Equations
,
J. Math. Comput. Sci.
10
1633
42
,
2020
.
2.
Y.
Zhu
,
Q. T.
Le Gia
,
M K
Juhl
,
G.
Coletti
and
Z.
Hameiri
,
Application of the Newton–Raphson Method to Lifetime Spectroscopy for Extraction of Defect Parameters
,
IEEE Journal of Photovoltaics
7
1092
7
,
2017
.
3.
Z.
Chongshan
and
Y.
Ren-Gang
,
Application of Jiles-Atherton and Newton-Raphson Method in Modeling Nonlinear Inductor
, In:
jProceedings of the 2012 Third International Conference on Mechanic Automation and Control Engineering
, pp
3219
23
,
2012
.
4.
T.
Irvine
,
Application of the Newton-Raphson method to vibration problems, Revision E, Vibrationdata
,
2010
.
5.
S.
Liu
,
L
.
Xu
and
F.
Ding
,
Iterative Parameter Estimation Algorithms for Dual-Frequency Signal Models
,
Algorithms
10
118
,
2017
.
6.
R. L.
Burden
,
J. D.
Faires
and
A. M.
Burden
,
Numerical Analysis: Cengage Learning
,
2015
.
7.
A.
Cordero
,
C.
Jordán
and
J. R.
Torregrosa
,
One-point Newton-type Iterative Methods: A Unified Point of View
,
Journal of Computational and Applied Mathematics
275
366
74
,
2015
.
8.
A. M.
Wissink
,
A. S.
Lyrintzis
and A T,
Chronopoulos Efficient Iterative Methods Applied to the Solution of Transonic Flows
,
Journal of computational Physics
123
379
93
,
1996
.
9.
F.
Zafar
,
A.
Cordero
,
R.
Quratulain
and J R.
Torregrosa Optimal Iterative Methods for Finding Multiple roots of Nonlinear Equations using Free Parameters
,
Journal of Mathematical Chemistry
56
1884
901
,
2018
.
10.
R.
Behl
,
P.
Maroju
and
S.
Motsa
,
Efficient Family of Sixth-Order Methods for Nonlinear Models with Its Dynamics
,
International Journal of Computational Methods
16
1840008
,
2019
.
11.
A. S.
Alshomrani
,
I. K.
Argyros
and
R.
Behl
,
An Optimal Reconstruction of Chebyshev–Halley-Type Methods with Local Convergence Analysis
,
International Journal of Computational Methods
17
1940017
,
2020
.
12.
V.
Candela
and
R.
Peris
,
A Class of Third Order Iterative Kurchatov–Steffensen (derivative free) Methods for Solving Nonlinear Equations
,
Applied Mathematics and Computation
350
93
104
,
2019
.
13.
O. S.
Solaiman
and
I.
Hashim
,
Two New Efficient Sixth Order Iterative Methods for Solving Nonlinear Equations
,
Journal of King Saud University-Science
31
701
5
,
2019
.
14.
A. S.
Alshomrani
,
R.
Behl
and
V.
Kanwar
,
An Optimal Reconstruction of Chebyshev–Halley Type Methods for Nonlinear Equations having Multiple Zeros
,
Journal of Computational and Applied Mathematics
354
651
62
,
2019
.
15.
M.
Kumar
,
A. K.
Singh
and
A.
Srivastava
,
Various Newton-type Iterative Methods for Solving Nonlinear Equations
,
Journal of the Egyptian Mathematical Society
21
334
9
,
2013
.
16.
X.
Fang
,
Q.
Ni
and
M. A.
Zeng
,
Modified Quasi-Newton Method for Nonlinear Equations
,
Journal of Computational Applied Mathematics and Computation
328
44
58
,
2018
.
17.
R.
Thukral
and
M. A.
Petković
,
A Family of Three-Point Methods of Optimal Order for Solving Nonlinear Equations
,
Journal of Computational and Applied Mathematics
233
2278
84
,
2010
.
18.
J. P.
Jaiswal
and
S.
Panday
,
An Efficient Optimal Eighth-order Iterative Method for Solving Nonlinear Equations
,
Universal Journal of Computational Mathematics
1
83
95
,
2013
.
19.
E.
Sharma
,
S.
Panday
and
M.
Dwivedi
,
New Optimal Fourth Order Iterative Method for Solving Nonlinear Equations
,
International Journal on Emerging Technologies
11
755
8
,
2020
.
20.
C. S.
Liu
,
E. R.
El-Zahar
and C
W.
Chang
,
Three Novel Fifth-Order Iterative Schemes for Solving Nonlinear Equations
,
Mathematics Computers in Simulation
187
282
93
,
2021
.
21.
S.
Li
,
Fourth-Order Iterative Method without Calculating the Higher Derivatives for Nonlinear Equation
,
Journal of Algorithms Computational Technology
13
1748302619887686
,
2019
.
22.
S. A.
Thota
,
New Root–Finding Algorithm Using Exponential Series
,
Ural Mathematical Journal
5
83
90
,
2019
.
23.
C. L.
Sabharwal
,
An Iterative Hybrid Algorithm for Roots of Non-Linear Equations
,
Eng
2
80
98
,
2021
.
24.
A. M.
Ostrowski
,
Solution of Equations and Systems of Equations
,
Academic Press
,
New York
,
1966
.
25.
H.
Kung
and
J. F.
Traub
,
Optimal Order of One-Point and Multipoint Iteration
,
Journal of the ACM (JACM)
21
643
51
,
1974
.
26.
S.
Sharifi
,
M.
Ferrara
,
M.
Salimi
and
S.
Siegmund
,
New Modification of Maheshwari’s Method with Optimal Eighth Order Convergence for Solving Nonlinear Equations
,
Open Mathematics
14
443
51
,
2016
.
27.
F.
Soleymani
and
S. K.
Vanani
,
Optimal Steffensen-Type Methods with Eighth Order of Convergence
,
Computers & Mathematics with Applications
Dec 1;
62
(
12
):
4619
26
,
2011
.
28.
J. F.
Steffensen
,
Remarks on iteration
,
Scandinavian Actuarial Journal
1933
64
72
,
1933
.
29.
D. K.
Babajee
,
A.
Cordero
,
F.
Soleymani
and
J. R.
Torregrosa
,
On Improved Three-Step Schemes with High Efficiency Index and Their Dynamics
,
Numerical Algorithms
65
153
69
,
2014
.
This content is only available via PDF.
You do not currently have access to this content.