Conventional spark and compression ignition engines suffer from low performance and high emissions, respectively. Homogeneous Charge Compression Ignition (HCCI) combustion is a promising combustion mode to solve inherent problems of internal combustion engines. HCCI engine has the potential to improve spark-ignition engine fuel economy while at the same time solving the trade-off of NOx-soot emissions found in compression ignition engines. With the assistance of machine learning such as artificial neural networks (ANN), the potential of the HCCI engine can be maximized. In general, the HCCI engine model is often grouped into three major categories. The first category, the empirical model, requires a substantial amount of data from the experiment, while the second category, the thermo-kinetic model, needs computational resources that are often not accessible for instantaneous engine control. The third category, the artificial neural network model, provides a number of benefits over the first and second categories, offering a compromise between computational resources, accuracy and experimental data.

1.
A. T.
Mohammed
et al, "
Soil fertility enrichment potential of Jatropha curcas for sustainable agricultural production: A case study of Birnin Kebbi, Nigeria
,"
Annals of the Romanian Society for Cell Biology
, pp.
21061
21073
,
2021
.
2.
I.
Veza
,
M. F. M.
Said
, and
Z. A.
Latiff
, "
Improved performance, combustion and emissions of SI engine fuelled with butanol: A review
,"
International Journal of Automotive and Mechanical Engineering
, vol.
17
, no.
1
, pp.
7648
7666
,
2020
.
3.
A.
Katijan
,
M. F. A.
Latif
,
Q. F.
Zahmani
,
S.
Zaman
,
K. A.
Kadir
, and
I.
Veza
, "
An Experimental Study for Emission of Four Stroke Carbureted and Fuel Injection Motorcycle Engine
,"
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
, vol.
62
, no.
2
, pp.
256
264
,
2019
.
4.
I.
Veza
,
M. F.
Roslan
,
M. F. M.
Said
, and
Z. A.
Latiff
, "
Potential of range extender electric vehicles (REEVS
)," in
IOP Conference Series: Materials Science and Engineering
,
2020
, vol.
884
, no.
1
, p.
012093
:
IOP Publishing
.
5.
M. F.
Roslan
,
I.
Veza
, and
M. F. M.
Said
, "
Predictive simulation of single cylinder n-butanol HCCI engine
," in
IOP Conference Series: Materials Science and Engineering, 2020
, vol.
884
, no.
1
:
IOP Publishing
,
2020
.
6.
I.
Veza
,
M. F. M.
Said
,
Z. A.
Latiff
,
M. F.
Hasan
,
R. I. A.
Jalal
, and
N. M. I. N.
Ibrahim
, "
Simulation of predictive kinetic combustion of single cylinder HCCI engine
," in
AIP Conference Proceedings
,
Pahang, Malaysia
,
2019
, vol.
2059
, no.
1
, pp.
(020017-1)
(020017-9)
:
AIP Publishing
.
7.
H.
Zhao
, HCCI and CAI engines for the automotive industry.
Elsevier
,
2007
.
8.
I.
Veza
et al, "
Strategies to Form Homogeneous Mixture and Methods to Control Auto-Ignition of HCCI Engine
,"
International Journal of Automotive and Mechanical Engineering
, vol.
18
, no.
4
, pp.
9253
9270
-9253–9270,
2021
.
9.
I.
Veza
,
M. F.
Roslan
,
M. F. M.
Said
,
Z. A.
Latiff
, and
M. A.
Abas
, "
Physico-chemical properties of Acetone-Butanol-Ethanol (ABE)-diesel blends: Blending strategies and mathematical correlations
,"
Fuel
, vol.
286
, p.
119467
, 2021/02/15/
2021
.
10.
I.
Veza
,
M. F. M.
Said
, and
Z. A.
Latiff
, "
Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation
,"
Biomass and Bioenergy
, vol.
144
, p.
105919
, 2021/01/01/
2021
.
11.
I.
Veza
,
M. F. M.
Said
, and
Z. A.
Latiff
, "
Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review
,"
Fuel Processing Technology
, vol.
196
, p.
106179
, 2019/12/15/
2019
.
12.
M.
Rusli
et al, "Performance and emission measurement of a single cylinder diesel engine fueled with palm oil biodiesel fuel blends," in
IOP Conference Series: Materials Science and Engineering
, 2021, vol.
1068
, no.
1: IOP Publishing
,
2021
.
13.
I.
Veza
,
V.
Muhammad
,
R.
Oktavian
,
D. W.
Djamari
, and
M. F. M.
Said
, "
Effect of COVID-19 on biodiesel industry: A case study in Indonesia and Malaysia
,"
International Journal of Automotive and Mechanical Engineering
, vol.
18
, no.
2
, pp.
8637
8646
,
2021
.
14.
Y.
Qian
,
H.
Li
,
D.
Han
,
L.
Ji
,
Z.
Huang
, and
X.
Lu
, "
Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of n-heptane
,"
Energy
, vol.
111
, pp.
1003
1016
, 2016/09/15/
2016
.
15.
H.
Zhao
, "Overview of CAI/HCCI gasoline engines," in
HCCI and CAI Engines for the Automotive Industry
:
Elsevier
,
2007
, pp.
21
44e
.
16.
I.
Veza
,
M. F. M.
Said
,
Z. A.
Latiff
, and
M. A.
Abas
, "
Application of Elman and Cascade neural network (ENN and CNN) in comparison with adaptive neuro fuzzy inference system (ANFIS) to predict key fuel properties of ABE-diesel blends
,"
International Journal of Green Energy
, pp.
1
13
,
2021
.
17.
I.
Veza
,
M. F.
Roslan
,
M. F. M.
Said
,
Z. A.
Latiff
, and
M. A.
Abas
, "
Cetane index prediction of ABE-diesel blends using empirical and artificial neural network models
,"
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
, pp.
1
18
,
2020
.
18.
J.
Rezaei
,
M.
Shahbakhti
,
B.
Bahri
, and
A. A.
Aziz
, "
Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks
,"
Applied Energy
, vol.
138
, pp.
460
473
, 2015/01/15/
2015
.
19.
R. K.
Maurya
and
M. R.
Saxena
, "
Characterization of ringing intensity in a hydrogen-fueled HCCI engine
,"
International Journal of Hydrogen Energy
, vol.
43
, no.
19
, pp.
9423
9437
,
2018
.
20.
B.
Bahri
,
M.
Shahbakhti
,
K.
Kannan
, and
A. A.
Aziz
, "
Identification of ringing operation for low temperature combustion engines
,"
Applied Energy
, vol.
171
, pp.
142
152
, 2016/06/01/
2016
.
21.
B.
Bahri
,
M.
Shahbakhti
, and
A. A.
Aziz
, "
Real-time modeling of ringing in HCCI engines using artificial neural networks
,"
Energy
, vol.
125
, pp.
509
518
, 2017/04/15/
2017
.
22.
H.
Bendu
,
B. B. V. L.
Deepak
, and
S.
Murugan
, "
Application of GRNN for the prediction of performance and exhaust emissions in HCCI engine using ethanol
,"
Energy Conversion and Management
, vol.
122
, pp.
165
173
, 2016/08/15/
2016
.
23.
H.
Bendu
,
B. B. V. L.
Deepak
, and
S.
Murugan
, "
Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO
,"
Applied Energy
, vol.
187
, pp.
601
611
, 2017/02/01/
2017
.
24.
A.
Anarghya
,
N.
Rao
,
N.
Nayak
,
A. R.
Tirpude
,
D. N.
Harshith
, and
B. R.
Samarth
, "
Optimized ANN-GA and experimental analysis of the performance and combustion characteristics of HCCI engine
,"
Applied Thermal Engineering
, vol.
132
, pp.
841
868
, 2018/03/05/
2018
.
25.
M.
Nazoktabar
,
S. A.
Jazayeri
,
K.
Arshtabar
, and
D. D.
Ganji
, "
Developing a multi-zone model for a HCCI engine to obtain optimal conditions using genetic algorithm
,"
Energy Conversion and Management
, vol.
157
, pp.
49
58
, 2018/02/01/
2018
.
26.
M.
Nazoktabar
,
S. A.
Jazayeri
,
M.
Parsa
,
D. D.
Ganji
, and
K.
Arshtabar
, "
Controlling the optimal combustion phasing in an HCCI engine based on load demand and minimum emissions
,"
Energy
,
2019
.
27.
G. L.
Leo
,
S.
Sekar
, and
S.
Arivazhagan
, "
Experimental investigation, optimization and ANN model prediction of a gasoline premixed waste cooking oil fueled HCCI–DI engine
,"
Journal of the Brazilian Society of Mechanical Sciences and Engineering
, vol.
40
, no.
2
, p.
49
,
2018
.
28.
M.
Taghavi
,
A.
Gharehghani
,
F. B.
Nejad
, and
M.
Mirsalim
, "
Developing a model to predict the start of combustion in HCCI engine using ANN-GA approach
,"
Energy Conversion and Management
, vol.
195
, pp.
57
69
, 2019/09/01/
2019
.
29.
M.
Wick
,
J.
Bedei
,
J.
Andert
,
B.
Lehrheuer
,
S.
Pischinger
, and
E.
Nuss
, "
Dynamic measurement of HCCI combustion with self-learning of experimental space limitations
,"
Applied Energy
, vol.
262
, p.
114364
, 2020/03/15/
2020
.
30.
A. K.
Yadav
,
H.
Malik
, and
S. S.
Chandel
, "
Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models
,"
Renewable and Sustainable Energy Reviews
, vol.
31
, pp.
509
519
, 2014/03/01/
2014
.
31.
A. K.
Yadav
and
S. S.
Chandel
, "
Solar energy potential assessment of western Himalayan Indian state of Himachal Pradesh using J48 algorithm of WEKA in ANN based prediction model
,"
Renewable Energy
, vol.
75
, pp.
675
693
, 2015/03/01/
2015
.
This content is only available via PDF.
Published by AIP Publishing.
You do not currently have access to this content.