Roller bearings are used to support the driveshaft of a rotating machinery and are suitable for handling the radial load. In this paper, multi objective design optimization of roller bearing configurations namely Spherical Roller Bearing and Needle Roller Bearing have been carried out. The two optimization objectives are chosen in this study to enhance the working life of the bearings. The objective functions considered are Dynamic Capacity (DC) and Elasto-Hydrodynamic Lubrication Minimum Film Thickness (EHLMFT) of the bearing. These two objectives are conflicting in a real-life scenario and the trade-off between the two objectives has been obtained using the Multi-Objective Optimization approaches. Traditional weighted sum and pareto optimal methods are implemented in this study to obtain optimal design parameters. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithms are used to arrive at optimum solutions for the problem formulated using the Weighted Sum Method (WSM). Two nature-inspired meta-heuristic approaches namely NSGA II and Multi-Objective Feasibility Enhanced PSO (MOFEPSO) are used in this study to obtain non-dominated solutions. The results show that MOFEPSO efficiently solves the problems of both Spherical and Needle roller bearing design.

1.
Tedric
,
A.H.
, “Essential concepts of bearing technology”.
CRC Press
(
2019
).
2.
Sumathi
,
S.
and
Paneerselvam
,
S.
, “Computational intelligence paradigms: theory & applications using MATLAB”.
CRC Press
(
2010
)
3.
Nguyen-Schäfer
,
H.
, “Computational design of rolling bearings. Switzerland”.
Springer International Publishing
(
2016
).
4.
Csalódi
,
R.
,
Süle
,
Z.
,
Jaskó
,
S.
,
Holczinger
,
T.
and
Abonyi
,
J.
, “
Industry 4.0-Driven Development of Optimization Algorithms: A Systematic Overview
”.
Complexity
(
2021
).
5.
Marcelin
,
J.L.
, “
Genetic optimisation of gears
”,
The International Journal of Advanced Manufacturing Technology.
17
(
12
),
910
915
(
2001
)
6.
Deb
,
K.
and
Jain
,
S.
, “
Multi-speed gearbox design using multi-objective evolutionary algorithms
”.
J. Mech. Des.
,
125
(
3
),
609
619
(
2003
).
7.
Choi
,
D.H.
and
Yoon
,
K.C.
, “
A design method of an automotive wheel-bearing unit with discrete design variables using genetic algorithms
”.
J. Trib.
,
123
(
1
),
181
187
(
2001
).
8.
Rao
,
R.V.
and
Pawar
,
R.B.
, “
Constrained design optimization of selected mechanical system components using Rao algorithms
”.
Applied Soft Computing
,
89
,
106141
(
2020
).
9.
Rahul
,
M.S.
and
Rameshkumar
,
K.
, “
Multi-objective optimization and numerical modelling of helical coil spring for automotive application
”.
Materials Today: Proceedings
,
46
,
4847
4853
(
2021
).
10.
Anurag
,
T.
,
Rameshkumar
,
K.
, and
SaravanaMurugan
,
S.
, “
Multi-Objective Optimization and Numerical Analysis of Coil Spring used in Automobile Suspension
”.
Proceedings of Third International Conference on Recent Advances in Materials and Manufacturing
(
ICRAMM
2021
).
11.
Krishnaprasad
,
K.
,
Sumesh
,
C.S.
and
Ramesh
,
A.
, “
Numerical modeling and multi objective optimization of face milling of AISI 304 steel
”.
Journal of Applied and Computational Mechanics
,
5
(
4
),
749
762
(
2019
).
12.
Shinde
,
S.S.
,
Thangavelu
,
S.
and
Jeyakumar
,
G.
, “
Evolutionary Computing Approaches for Solving Multi-Objective and Many-Objective Optimization Problems: A Review
”.
In 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA
),
IEEE
(
2019
)
13.
Changsen
,
W.
and
Wan
,
C.
, “Analysis of rolling element bearings”.
Wiley-Blackwell
(
1991
).
14.
Kalita
,
K.
,
Tiwari
,
R.
and
Kakoty
,
S.K.
, “
Multi-objective optimisation in rolling element bearing system design
”.
In Proceedings of the International Conference on Optimisation (SIGOPT 2002
),
Lambrecht, Germany
(
2002
).
15.
Chakraborty
,
I.
,
Kumar
,
V.
,
Nair
,
S.B.
and
Tiwari
,
R.
, “
Rolling element bearing design through genetic algorithms
”.
Engineering Optimization
,
35
(
6
),
649
659
(
2003
)
16.
Rao
,
B.R.
and
Tiwari
,
R.
, “
Optimum design of rolling element bearings using genetic algorithms
”.
Mechanism and machine theory
,
42
(
2
),
233
250
(
2007
).
17.
Gupta
,
S.
,
Tiwari
,
R.
and
Nair
,
S.B.
, “
Multi-objective design optimisation of rolling bearings using genetic algorithms
”.
Mechanism and Machine Theory
,
42
(
10
),
1418
1443
(
2007
)
18.
Kumar
,
K.S.
,
Tiwari
,
R.
and
Reddy
,
R.S.
, “
Development of an optimum design methodology of cylindrical roller bearings using genetic algorithms
”.
International journal for computational methods in engineering science and mechanics
,
9
(
6
),
321
341
(
2008
).
19.
Kumar
,
K.S.
,
Tiwari
,
R.
and
Prasad
,
P.V.V.N.
, “
An optimum design of crowned cylindrical roller bearings using genetic algorithms
”.
Journal of Mechanical Design
,
131
(
5
), (
2009
)
20.
Wei
,
Y.
and
Chengzu
,
R.
, “
Optimal design of high speed angular contact ball bearing using a multiobjective evolution algorithm
”.
International Conference on Computing, Control, and Industrial Engineering
,
1
,
320
324
(
2010
).
21.
Panda
,
S.
,
Panda
,
S.N.
,
Nanda
,
P.
and
Mishra
,
D.
, “
Comparative study on optimum design of rolling element bearing
”.
Tribology International
,
92
,
595
604
(
2015
).
22.
Tiwari
,
R.
and
Waghole
,
V.
, “
Optimization of spherical roller bearing design using artificial bee colony algorithm and grid search method
”.
International Journal for Computational Methods in Engineering Science and Mechanics
,
16
(
4
),
221
233
(
2015
).
23.
Kalyan
,
M.
and
Tiwari
,
R.
, “
Multi-objective optimization of needle roller bearings based on fatigue and wear using evolutionary algorithm
”.
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
,
230
(
2
),
170
185
(
2016
).
24.
Jat
,
A.
and
Tiwari
,
R.
, “
Multi-objective optimization of spherical roller bearings based on fatigue and wear using evolutionary algorithm
”.
Journal of King Saud University-Engineering Sciences
,
32
(
1
),
58
68
(
2020
).
25.
Duggirala
,
A.
,
Jana
,
R.K.
,
Shesu
,
R.V.
and
Bhattacharjee
,
P.
, “
Design optimization of deep groove ball bearings using crowding distance particle swarm optimization
”.
Sādhanā
,
43
(
1
),
1
8
(
2018
).
26.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
and
Meyarivan
,
T.A.M.T.
, “
A fast and elitist multiobjective genetic algorithm: NSGA-II
”.
IEEE transactions on evolutionary computation
,
6
(
2
),
182
197
(
2002
).
27.
Emmerich
,
M.T.
and
Deutz
,
A.H.
, “
A tutorial on multiobjective optimization: fundamentals and evolutionary methods
”.
Natural computing
,
17
(
3
),
585
609
(
2018
).
28.
Kennedy
,
J.
and
Eberhart
,
R.
, “
Particle swarm optimization
”.
In Proceedings of ICNN’95-international conference on neural networks
,
4
,
1942
1948
(
1995
).
29.
Coello
,
C.C.
and
Lechuga
,
M.S.
, “
MOPSO: A proposal for multiple objective particle swarm optimization
”.
In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02
,
2
,
1051
1056
(
2002
).
30.
Rameshkumar
,
K.
,
Rajendran
,
C.
and
Mohanasundaram
,
K.M.
, “
A novel particle swarm optimisation algorithm for continuous function optimisation
”.
International Journal of Operational Research
,
13
(
1
),
1
21
(
2012
).
31.
Rameshkumar
,
K.
,
Rajendran
,
C.
and
Mohanasundaram
,
K.M.
, “
Discrete particle swarm optimisation algorithms for minimising the completion-time variance of jobs in flowshops
”.
International Journal of Industrial and Systems Engineering
,
7
(
3
),
317
340
(
2011
).
32.
Kadadevaramath
,
R.S.
,
Chen
,
J.C.
,
Shankar
,
B.L.
and
Rameshkumar
,
K.
, “
Application of particle swarm intelligence algorithms in supply chain network architecture optimization
”.
Expert Systems with Applications
,
39
(
11
),
10160
10176
(
2012
).
33.
Hasanoglu
,
M.S.
and
Dolen
,
M.
, “
Feasibility enhanced particle swarm optimization for constrained mechanical design problems
”.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
,
232
(
2
),
381
400
(
2018
)
34.
Sinan Hasanoglu
,
M.
and
Dolen
,
M.
, “
Multi-objective feasibility enhanced particle swarm optimization
”.
Engineering Optimization
,
50
(
12
),
2013
2037
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.