For the sake of future sustainability, experts are looking at nanotechnology and solar collector technology to enhance the system’s performance. This study improves performance of a flat plate solar collectors filled with nanofluids. Further studies indicated that the high aspect ratio of MWCNTs resulted in a significant increase in thermal conductivity when added to base fluid at a volume concentration of 1%. Increasing particle concentration and working fluid temperature increases thermal conductivity in the studied nanofluids, showing promise for improved thermal conductivity. These higher thermal conductivities outperform those of the base fluid. Various conventional empirical correlations for estimating nanofluid and base liquid specific heat, density, conductivity, and viscosity have been described. [(Ti-Ta)/I] is the optimum value for the collector’s efficiency. One percent nanofluid concentration showed the highest efficiency when various percentages of nanofluid were used in the experimental activity. Additionally, as the proportion of MWCNT particles increased, so did the quantity of heat absorbed by the FPSC.

1.
R.
Adib
, ‘
RENEWABLES 2015 GLOBAL STATUS REPORT
’, p.
28
.
2.
R.
Kumar
,
S. Kumar
Verma
, and
V.
Kumar
, ‘
Performance Analysis of Triangular Air Heating System Using Solar Energy
’,
International Journal of Science and Research
,
2019
.
3.
S. K.
Verma
,
A. K.
Tiwari
, and
D. S.
Chauhan
, ‘
Performance augmentation in flat plate solar collector using MgO/water nanofluid
’,
Energy Conversion and Management
, vol.
124
, pp.
607
617
,
2016
, doi: .
4.
R.
KUMAR
and
S. KUMAR
VERMA
, ‘
EXERGETIC AND ENERGETIC EVALUATION OF AN INNOVATIVE SOLAR AIR HEATING SYSTEM COATED WITH GRAPHENE AND COPPER OXIDE NANO-PARTICLES
’,
Journal of Thermal Engineering
, Feb.
2021
, doi: .
5.
R.
Kumar
and
S. Kumar
Verma
, ‘
Numerical investigation of performance analysis of Triangular Solar air heater using Computational Fluid Dynamics (CFD
)’,
IOP Conference Series: Materials Science and Engineering
, vol.
1116
, no.
1
, p.
012047
, Apr.
2021
, doi: .
6.
R.
Kumar
and
S. K.
Verma
, ‘
Numerical investigation of performance analysis of Triangular Solar air heater using Computational Fluid Dynamics (CFD
)’,
IOP Conf. Ser.: Mater. Sci. Eng.
, vol.
1116
, no.
1
, p.
012047
, Apr.
2021
, doi: .
7.
R.
Kumar
,
S. K.
Mishra
,
H.
Kumar
,
R.
Saxena
, and
A. K.
Pathariya
, ‘
Experimental Investigation of Equilateral Triangle-Shaped Solar Air Heater with Two Blackened Absorber Surfaces
’, in
Advances in Clean Energy Technologies
,
Singapore
,
2021
, pp.
221
233
. doi: .
8.
S. K.
Mishra
,
R.
Kumar
,
R.
Joshi
,
H.
Kumar
, and
N.
Saxena
, ‘
Experimental Investigation, Exergy Analysis, and CFD Simulation of Solar Air Heater Roughened with Artificial V-Shaped Ribs on Absorber Surface Artificial Roughness on Absorber Plate
’, in
Advances in Clean Energy Technologies
,
Singapore
,
2021
, pp.
235
252
. doi: .
9.
R.
Kumar
,
S. Kumar
Verma
, and
M.
Singh
, ‘
Performance evaluation of cerium oxide/water nanofluid based FPSC: An experimental analysis
’,
Materials Today: Proceedings
, Oct.
2021
, doi: .
10.
S. K.
Singh
,
S. K.
Verma
, and
R.
Kumar
, ‘
Thermal performance and behavior analysis of SiO2, Al2O3 and MgO based nano-enhanced phase-changing materials, latent heat thermal energy storage system
’,
Journal of Energy Storage
, vol.
48
, p.
103977
, Apr.
2022
, doi: .
11.
S. K.
Singh
,
R.
Kumar
, and
S. K.
Verma
, ‘
CuO Nanoparticle Enhanced Paraffin for Latent Heat Storage Applications
’,
IOP Conf. Ser.: Mater. Sci. Eng.
, vol.
1116
, no.
1
, p.
012061
, Apr.
2021
, doi: .
12.
S.
Chand
and
P.
Chand
, ‘
Comparative performance evaluation of louvered finned solar air heater
’,
AIP Conference Proceedings
, vol.
2341
, no.
1
, p.
030013
, May
2021
, doi: .
13.
M.
Srivastava
,
G.
Dessai
,
D.
Srivastava
,
P.
Bishnoi
,
P.
Singh
, and
M.
Sinha
,
Thermal analysis of solar air heater by using pebbles as an absorber material
, vol.
2341
.
2021
. doi: .
14.
M.
Hanmina
,
D.
Ichsani
, and
M.
Hakam
,
The experiment study of the performance of air heater solar collector type dimple inline plate v-corrugated absorber
, vol.
2187
.
2019
. doi: .
15.
R.
Kumar
,
S. K.
Verma
, and
M.
Singh
, ‘
Experimental investigation of nanomaterial doped in black paint coating on absorber for energy conversion applications
’,
Materials Today: Proceedings
, vol.
44
, pp.
961
967
, Jan.
2021
, doi: .
16.
S. K.
Verma
,
A. K.
Tiwari
, and
D. S.
Chauhan
, ‘
Experimental evaluation of flat plate solar collector using nanofluids
’,
Energy Conversion and Management
, vol.
134
, pp.
103
115
, Feb.
2017
, doi: .
17.
S. K.
Verma
and
A. K.
Tiwari
, ‘
Progress of nanofluid application in solar collectors: A review
’,
Energy Conversion and Management
, vol.
100
, pp.
324
346
, Aug.
2015
, doi: .
18.
S. K.
Verma
,
A.
Tiwari
,
S.
Tiwari
, and
D. S.
Chauhan
, ‘
Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid
’,
Solar Energy
,
2018
, doi: .
19.
N.
Gupta
,
A.
Sharma
,
P. K. S.
Rathore
, and
S. K.
Verma
,
‘Thermal performance optimization of heat pipe using nanofluid: response surface methodology
’,
2020
, doi: .
20.
M.
Faizal
,
R.
Saidur
,
S.
Mekhilef
, and
M. A.
Alim
, ‘
Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector
’,
Energy Conversion and Management
, vol.
76
, pp.
162
168
, Dec.
2013
, doi: .
21.
T.
Yousefi
,
F.
Veysi
,
E.
Shojaeizadeh
, and
S.
Zinadini
, ‘
An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors
’,
Renewable Energy
, vol.
39
, no.
1
, pp.
293
298
, Mar.
2012
, doi: .
22.
Q.
He
,
S.
Zeng
, and
S.
Wang
, ‘
Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids
’,
Applied Thermal Engineering
, vol.
88
, pp.
165
171
, Sep.
2015
, doi: .
23.
E.
Farajzadeh
,
S.
Movahed
, and
R.
Hosseini
, ‘
Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector
’,
Renewable Energy
, vol.
118
, pp.
122
130
, Apr.
2018
, doi: .
24.
L.
Sundar
,
A.
Kirubeil
,
V.
Punnaiah
,
M. K.
Singh
, and
A.
Sousa
,
‘Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts
’,
2018
, doi: .
25.
O. A.
Hussein
,
K.
Habib
,
A. S.
Muhsan
,
R.
Saidur
,
O. A.
Alawi
, and
T. K.
Ibrahim
, ‘
Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid
’,
Solar Energy
, vol.
204
, pp.
208
222
, Jul.
2020
, doi: .
26.
O. A.
Alawi
,
H. Mohamed
Kamar
,
A. R.
Mallah
,
S. N.
Kazi
, and
N. A. C.
Sidik
, ‘
Thermal efficiency of a flat-plate solar collector filled with Pentaethylene Glycol-Treated Graphene Nanoplatelets: An experimental analysis
’,
Solar Energy
, vol.
191
, pp.
360
370
, Oct.
2019
, doi: .
27.
S.
Heris
,
M. N.
Esfahany
, and
S. Gh.
Etemad
, ‘
Convective Heat Transfer of a Cu/Water Nanofluid Flowing Through a Circular Tube: Experimental Heat Transfer: Vol 22, No 4
’, vol.
22
, no.
4
, pp.
217
227
, doi: .
28.
T.-P.
Teng
,
Y.-H.
Hung
,
T.-C.
Teng
,
H.-E.
Mo
, and
H.-G.
Hsu
, ‘
The effect of alumina/water nanofluid particle size on thermal conductivity
’,
Applied Thermal Engineering
, vol.
30
, no.
14
, pp.
2213
2218
, Oct.
2010
, doi: .
This content is only available via PDF.
You do not currently have access to this content.