In order to apply microcapsules as a functional material of cement composites, such as self-healing and heat-transfer-controlling materials, the effect of the addition of microcapsules on the mechanical properties of cement mortar was investigated. Polystyrene microcapsules containing CaCl2 aqueous solution as a microencapsulation substance with monocore and multicore structures were successfully prepared from solid-in-oil-in-water (S/O/W) emulsion by the solvent evaporation method. The compressive strengths of the mortars with and without the microcapsules were measured at various curing times. The compressive strength of the mortar without microcapsules increased with curing time. The compressive strength of the mortar with the microcapsules was lower than that without microcapsules and increased with time. The decrease in the compressive strength increased with the amount of the microcapsules added in the mortar. The self-healing effect of cracked mortar by CaCl2, which would be supplied from the microcapsules due to outer mechanical force making cracks in the mortar and on the microcapsules was not clearly shown in this experiment. However, permeation and leakage of Cl ion to the surrounding mortar from the microcapsules was observed by mapping analysis of SEM-EDX.

1.
Y.
Izumi
,
A.
Iizuka
and
H-J.
Ho
,
J. Clean. Prod.
312
,
127618
(
2021
).
2.
H.A.
Moghadam
,
A.
Mirzaei
and
Z.A.
Dehghi
,
Constr. Build. Mater.
250
,
118884
(
2020
).
3.
L.G.
Li
,
X.Q.
Chen
,
S.H.
Chu
,
Y.
Ouyang
and
A.K.H.
Kwan
,
Constr. Build. Mater.
229
,
116862
(
2019
).
4.
J.
Wang
,
J.
Xie
,
Y.
Wang
,
Y.
Liu
and
Y.
Ding
,
Cem. Concr. Compos.
114
,
103770
(
2020
).
5.
F.
Althoey
,
Constr. Build. Mater.
299
,
123965
(
2021
).
6.
M.C.G.
Juenger
,
P.J.M.
Monteiro
,
E.M.
Gartner
and
G.P.
Denbeaux
,
Cem. Concr. Res.
35
,
19
25
(
2005
).
7.
H.
Akhter
,
F.K.
Cartledge
,
A.
Roy
and
M.E.
Tittlebaum
,
Cem. Concr. Res.
23
,
833
42
(
1993
).
8.
A.C.
Jupe
,
A.P.
Wilkinson
,
K.
Luke
and
G.P.
Funkhouser
,
J. Am. Ceram. Soc.
90
,
2595
602
(
2007
).
9.
T.
Vehmas
,
A.
Kronlöf
and
A.
Cwirzen
,
Mag. Concr. Res.
70
,
856
63
(
2018
).
10.
C.
Qiao
,
P.
Suraneni
,
T.N.W.
Ying
,
A.
Choudhary
and
J.
Weiss
,
Cem. Concr. Compos.
97
,
43
53
(
2019
).
11.
A.
Kanellopoulos
,
P.
Giannaros
and
A.
Al-Tabbaa
,
Constr. Build. Mater.
122
,
577
93
(
2016
).
12.
A.
Al-Tabbaa
,
C.
Litina
,
P.
Giannaros
,
A.
Kanellopoulos
and
L.
Souza
,
Constr. Build. Mater.
208
,
669
85
(
2019
).
13.
W.
Du
,
J.
Yu
,
Y.
Gu
,
Y.
Li
,
X.
Han
and
Q.
Liu
,
Constr. Build. Mater.
202
,
762
9
(
2019
).
14.
P.
Chindasiriphan
,
H.
Yokota
and
P.
Pimpakan
,
Constr. Build. Mater.
233
,
116975
(
2020
).
15.
L.
Lv
,
P.
Guo
,
F.
Xing
and
N.
Han
,
Constr. Build. Mater.
235
,
117443
(
2020
).
16.
Y.
Wang
,
J.
Li
,
W.
Miao
,
Y.
Su
,
X.
He
and
B.
Strnadel
,
Constr. Build. Mater.
297
,
123576
(
2021
).
17.
S.
Batchuluun
,
H.
Matsune
,
K.
Shiomori
,
O.
Bayanjargal
and
T.
Baasankhuu
,
J. Phys. Conf. Ser.
1763
,
12030
(
2021
).
18.
S.
Batchuluun
,
H.
Matsune
,
K.
Shiomori
,
O.
Bayanjargal
and
T.
Baasankhuu
,
J. Chem. Eng. Japan
54
,
517
24
(
2021
).
19.
K.
Shiomori
,
J.
Taniguchi
,
S.
Kiyoyama
,
Y.
Kawano
and
Y.
Hatate
,
J. Chem. Eng. Jpn.
37
,
357
64
(
2004
).
20.
F.
Georget
,
W.
Wilson
and
K.L.
Scrivener
,
Cem. Concr. Res.
141
,
106327
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.