75Cr3C2-25NiCr coating was deposited on A516 steel by flame spray process to enhance high temperature corrosion resistance. Corrosion studies were investigated on bare and flame spray-coated steel after exposure at 600°C under cyclic condition in a molten salt environment (45% NaCl+55% KCl). The mass change measurements were performed after each cycle that consisted of 20 hours to establish the corrosion rate. Field emission scanning electron microscopy (FESEM) equipped with an energy dispersive X-ray analysis (EDS), X-ray diffraction (XRD), micro-vickers hardness, and 3D optical microscope (OM) were used to characterize the microstructure, elemental analysis, phase, mechanical properties, and surface roughness of the coatings, respectively. The spallation occurred on A516 steel without coating after corrosion test due to the formation of unprotective Fe2O3 oxide scales. On the contrary, Cr3C2-NiCr coating was found to be more protective by the formation of oxide scale consisted of Cr2O3 and spinels. The results showed that the corrosion rate and the surface roughness of Cr3C2-NiCr coating having lower value than that of A156 steel without coating which were approximately of 11.49 mm/y and 25.02 µm, respectively. However, the mechanical properties from vickers hardness measurement showed that Cr3C2−NiCr coating reached the highest value of about 364.77 HV.

1.
A.J.
Ragauskas
,
C.K.
Williams
,
B.H.
Davison
,
G.
Britovsek
,
J.
Cairney
,
C.A.
Eckert
,
W.J.
Frederick
,
J.P.
Hallett
,
D.J.
Leak
,
C.L.
Liotta
,
J.R.
Mielenz
,
R.
Murphy
,
R.
Templer
, and
T.
Tschaplinski
,
Science.
311
,
484
489
(
2006
).
2.
A.
Miltner
,
G.
Beckmann
, and
A.
Friedl
,
Appl. Therm. Eng.
26
,
2005
2011
(
2006
).
3.
A.R.
Mayer
,
K.
Bertuol
,
I.B.A.F.
Siqueira
,
A.
Chicoski
,
R.F.
Váz
,
M.J.
de Sousa
, and
A.G.M.
Pukasiewicz
,
Ultrason. Sonochem.
69
,
105271
(
2020
).
4.
D.
Mudgal
,
L.
Ahuja
,
S.
Singh
, and
S.
Prakash
,
Surf. Coatings Technol.
325
,
145
156
(
2017
).
6.
W.
Zhou
,
K.
Zhou
,
C.
Deng
,
K.
Zeng
, and
Y.
Li
,
Surf. Coatings Technol.
309
,
849
859
(
2017
).
7.
J.G.
Thakare
,
C.
Pandey
,
R.S.
Mulik
, and
M.M.
Mahapatra
,
Mater. Res. Express
1
23
(
2018
).
8.
E.
Qin
,
S.
Yin
,
H.
Ji
,
Q.
Huang
,
Z.
Liu
, and
S.
Wu
,
J. Therm. Spray Technol.
26
,
787
797
(
2017
).
9.
M.
Oksa
,
J.
Metsäjoki
, and
J.
Kärki
,
Coatings
6
,
65
(
2016
).
10.
T.
Hussain
,
T.
Dudziak
,
N.J.
Simms
, and
J.R.
Nicholls
,
J. Therm. Spray Technol.
22
,
797
807
(
2013
).
11.
C.
Fu
,
Y.
Li
, and
Y.F.
Wang
,
Oxid. Met.
95
,
45
63
(
2021
).
12.
E.
Gariboldi
,
L.
Rovatti
,
N.
Lecis
,
L.
Mondora
, and
G.A.
Mondora
,
Surf. Coatings Technol.
305
,
83
(
2016
).
13.
V.N.
Shukla
,
R.
Jayaganthan
, and
V.K.
Tewari
,
Adv. Mater. Res.
585
,
483
487
(
2012
).
14.
K.
Lencová
,
R.
Mušálek
,
F.
Lukáč
,
M.
Vostřák
, and
Z.
Česánek
,
IOP Conf. Ser. Mater. Sci. Eng.
1178
,
012039
(
2021
).
15.
T.S.
Sidhu
,
S.
Prakash
, and
R.D.
Agrawal
,
Mater. Sci.
41
,
805
823
(
2005
).
16.
N.
Rana
,
M.M.
Mahapatra
,
R.
Jayaganthan
, and
S.
Prakash
,
J. Therm. Spray Technol.
24
,
769
777
(
2015
).
17.
F.N.
Sayed
and
V.
Polshettiwar
,
Sci. Rep.
5
,
1
14
(
2015
).
18.
K.
Wang
,
S.
Hong
,
Z.
Wei
,
N.
Hu
,
J.
Cheng
, and
Y.
Wu
,
J. Mater. Res. Technol.
15
,
3122
3132
(
2021
).
19.
M.
Xie
,
S.
Zhang
, and
M.
Li
,
Appl. Surf. Sci.
273
,
799
805
(
2013
).
20.
S.
Matthews
,
A.
Asadov
,
S.
Ruddell
, and
L.M.
Berger
,
J. Alloys Compd.
728
,
445
463
(
2017
).
21.
H.
Lu
,
J.
Shang
,
X.
Jia
,
Y.
Li
,
F.
Li
,
J.
Li
, and
Y.
Nie
,
Surf. Coatings Technol.
388
,
125534
(
2020
).
22.
S.
Esmaeil
,
Ni-Based Coatings for High Temperature Corrosion Protection
,
2018
.
This content is only available via PDF.
You do not currently have access to this content.