Premature birth and even deaths are caused by maternal congenital such as diabetes or other diseases. Normal birth can be attempted if the mother's health continues to be monitored. Monitoring can be done with electronic fetal monitoring, part of the electronic health record (EHR). The increasing use of EHR results in healthcare big data. This data can be analyzed with machine learning to find new patterns that are useful to science. Fetal health is an area that can be analyzed using machine learning. This study uses a prediction technique to determine the relationship of features that affect the health condition of the fetal with the feyn qlattice regression model. The features analyzed were fetal movements, uterine contractions, light decelerations, and severe decelerations. Feyn qlattice produces the most potential models in the severe decelerations feature, which is 17227 models. The fetal movements training validation test resulted in R2 values of 0.582, RMSE 0.773, and MAE 0.685. Features uterine contractions R2 -0.183, RMSE 0.668 and MAE 0.573. Features light decelerations R2 -0.421, RMSE 0.732 and MAE 0.566 and features severe decelerations R2 -1.27, RMSE 0.925 and MAE 0.859. Validation test for fetal movements R2 -0.617, RMSE 0.781, and MAE 0.69. Features uterine contractions R2 -0.196, RMSE 0.672 and MAE 0.576. Features light decelerations R2 -0.488, RMSE 0.749 and MAE 0.566 and features severe decelerations R2 -1.276, RMSE 0.924, and MAE 0.861.

1.
Nelson
,
K.M.
;
Irvin-Choy
,
N.
;
Hoffman
,
M.K.
;
Gleghorn
,
J.P.
;
Day
,
E.S.
Diseases and Conditions That Impact Maternal and Fetal Health and the Potential for Nanomedicine Therapies
.
Adv. Drug Deliv. Rev.
2021
,
170
,
425
438
, doi:https://doi.org/10.1016/j.addr.2020.09.013.
2.
Hameed
,
A.B.
;
Combs
,
C.A.
Society for Maternal-Fetal Medicine Special Statement: Updated Checklist for Antepartum Care of Pregestational Diabetes Mellitus
.
Am. J. Obstet. Gynecol.
2020
,
223
,
B2
B5
, doi:.
3.
Reissland
,
N.
; R.
Wood
,
J.E.
;
Lane
,
A.
Effects of Maternal Mental Health on Fetal Visual Preference for Face-like Compared to Non-Face like Light Stimulation
.
Early Hum. Dev.
2020
,
151, 105227
, doi:https://doi.org/10.1016/j.earlhumdev.2020.105227.
4.
Peng
,
J.
;
Huang
,
Y.
;
Yu
,
K.
;
Fan
,
R.
;
Zhou
,
J.
Maternal Health Care Wearing Equipment Based on Fetal Information Monitoring
.
J. Infect. Public Health
2020
,
13
,
2009
2013
, doi:.
5.
Mohan
,
M.
;
Ramawat
,
J.
;
La Monica
,
G.
;
Jayaram
,
P.
;
Fattah
,
S.A.
;
Learmont
,
J.
;
Bryan
,
C.
;
Zaoui
,
S.
;
Pullattayil
,
A.K.
;
Konje
,
J.
; et al
Electronic Intrapartum Fetal Monitoring: A Systematic Review of International Clinical Practice Guidelines
.
AJOG Glob. Reports
2021
,
1, 100008
, doi:.
6.
Escobar
,
G.J.
;
Soltesz
,
L.
;
Schuler
,
A.
;
Hamid Niki
,
I.M.
;
Lee
,
C.
Prediction of Obstetrical and Fetal Complications Using Automated Electronic Health Record Data
.
Am. J. Obstet. Gynecol.
2021
,
224
,
137
147
, doi:https://doi.org/10.1016/j.ajog.2020.10.030.
7.
Khennou
,
F.
;
Khamlichi
,
Y.I.
;
Chaoui
,
N.E.H.
Improving the Use of Big Data Analytics within Electronic Health Records: A Case Study Based OpenEHR
.
In Proceedings of the Procedia Computer Science; Elsevier B.V.
,
2018
; Vol.
127
, pp.
60
68
.
8.
Tavana
,
M.
Transforming Healthcare One Byte at a Time in the World of Big Data
.
Healthc. Anal.
2021
,
1, 100003
, doi:.
9.
Yang
,
Y.
;
Zheng
,
X.
;
Guo
,
W.
;
Liu
,
X.
;
Chang
,
V.
Privacy-Preserving Fusion of IoT and Big Data for e-Health
.
Futur. Gener. Comput. Syst.
2018
,
86
,
1437
1455
, doi:https://doi.org/10.1016/j.future.2018.01.003.
10.
Beata
Butryn;
Chomiak-Orsa
,
I.
;
Hauke
,
K.
;
Pondel
,
M.
;
Agnieszka
;
Siennicka Application of Machine Learning in Medical Data Analysis Illustrated with an Example of Association Rules
.
In Proceedings of the Procedia Computer Science; Elsevier B.V.
,
2021
; Vol.
192
, pp.
3134
3143
.
11.
Waring
,
J.
;
Lindvall
,
C.
;
Umeton
,
R.
Automated Machine Learning: Review of the State-of-the-Art and Opportunities for Healthcare
.
Artif. Intell. Med.
2020
,
104, 101822
, doi:.
12.
Fung
,
R.
;
Villar
,
J.
;
Dashti
,
A.
;
Cheikh Ismail
,
L.
;
Staines-Urias
,
E.
;
Ohuma
,
E.O.
;
Salomon
,
L.J.
;
Victora
,
C.G.
;
Barros
,
F.C.
;
Lambert
,
A.
; et al
Achieving Accurate Estimates of Fetal Gestational Age and Personalised Predictions of Fetal Growth Based on Data from an International Prospective Cohort Study: A Population-Based Machine Learning Study
.
Lancet Digit. Heal.
2020
,
2
,
e368
e375
, doi:.
13.
Alsaggaf;
Wafaa;
Cömert
,
Z.
;
Nour
,
M.
;
Polat
,
K.
;
Brdesee
,
H.
;
Toğaçar
,
M.
Predicting Fetal Hypoxia Using Common Spatial Pattern and Machine Learning from Cardiotocography Signals
.
Appl. Acoust.
2020
,
167, 107429
, doi:https://doi.org/10.1016/j.apacoust.2020.107429.
14.
Subasi
,
A.
;
Kadasa
,
B.
;
Kremic
,
E.
Classification of the Cardiotocogram Data for Anticipation of Fetal Risks Using Bagging Ensemble Classifier
.
Procedia Comput. Sci.
2020
,
168
,
34
39
, doi:.
15.
Akbulut
,
A.
;
Ertugrul
,
E.
;
Topcu
,
V.
Fetal Health Status Prediction Based on Maternal Clinical History Using Machine Learning Techniques
.
Comput. Methods Programs Biomed.
2018
,
163
,
87
100
, doi:https://doi.org/10.1016/j.cmpb.2018.06.010.
16.
Alsaggaf
,
W.
;
Cömert
,
Z.
;
Nour
,
M.
;
Polat
,
K.
;
Brdesee
,
H.
;
Toğaçar
,
M.
Predicting Fetal Hypoxia Using Common Spatial Pattern and Machine Learning from Cardiotocography Signals
.
Appl. Acoust.
2020
,
167, 107429
, doi:https://doi.org/10.1016/j.apacoust.2020.107429.
17.
Torrents-Barrena
,
J.
;
Piella
,
G.
;
Masoller
,
N.
;
Gratacós
,
E.
;
Eixarch
,
E.
;
Ceresa
,
M.
;
Ballester
,
M.Á.G.
Segmentation and Classification in MRI and US Fetal Imaging: Recent Trends and Future Prospects
.
Med. Image Anal.
2019
,
51
,
61
88
, doi:https://doi.org/10.1016/j.media.2018.10.003.
18.
Abzu The QLattice Is a Radical New Machine Learning Model
.
19.
Bharadi
,
V.A.
QLattice Environment and Feyn QGraph Models—A New Perspective Toward Deep Learning.
In Emerging Technologies for Healthcare: Internet of Things and Deep Learning Models
;
Mangla
,
M.
,
Sharma
,
N.
,
Mittal
,
P.
,
Wadhwa
,
V.M.
,
Thirunavukkarasu
,
K.
,
Khan
,
S.
, Eds.;
Scrivener Publishing LLC
:
Beverly
,
2021
; pp.
69
92
ISBN 9781119791720.
20.
Larxel Fetal Health Classification
.
21.
Stöger
,
K.
;
Schneeberger
,
D.
;
Kieseberg
,
P.
;
Holzinger
,
A.
Legal Aspects of Data Cleansing in Medical AI.
Comput. Law Secur. Rev.
2021
,
42
,
1
13
, doi:.
22.
Sachan
,
S.
;
Almaghrabi
,
F.
;
Yang
,
J.-B.
;
Xu
,
D.-L.
Evidential Reasoning for Preprocessing Uncertain Categorical Data for Trustworthy Decisions: An Application on Healthcare and Finance
.
Expert Syst. Appl.
2021
,
185
, doi:https://doi.org/10.1016/j.eswa.2021.115597.
23.
Pawluszek-Filipiak
,
K.
;
Borkowski
,
A.
On the Importance of Train-Test Split Ratio of Datasets in Automatic Landslide Detection by Supervised Classification
.
Remote Sens.
2020
,
12
, doi:.
24.
Rácz
,
A.
;
Bajusz
,
D.
;
Héberger
,
K.
Effect of Dataset Size and Train/Test Split Ratios in Qsar/Qspr Multiclass Classification
.
Molecules
2021
,
26
,
1
16
, doi:.
25.
Sambasivam
,
G.
;
Opiyo
,
G.D.
A Predictive Machine Learning Application in Agriculture: Cassava Disease Detection and Classification with Imbalanced Dataset Using Convolutional Neural Networks
.
Egypt. Informatics J.
2021
,
22
,
27
34
, doi:.
26.
Y.
Wong
, G.;
H.F.
Leung
, F.;
Sai-HoLing A Hybrid Evolutionary Preprocessing Method for Imbalanced Datasets
.
Inf. Sci. (Ny).
2018
,
454–455
,
161
177
, doi:https://doi.org/10.1016/j.ins.2018.04.068.
27.
Seo
,
H.
;
Back
,
S.
;
Lee
,
S.
;
Park
,
D.
;
Kim
,
T.
;
Lee
,
K.
Intra-and Inter-Epoch Temporal Context Network (IITNet) Using Sub-Epoch Features for Automatic Sleep Scoring on Raw Single-Channel EEG
.
Biomed. Signal Process. Control
2020
,
61, 102037
, doi:.
28.
Zhang
,
P.
;
Ma
,
W.
;
Wen
,
F.
;
Liu
,
L.
;
Yang
,
L.
;
Song
,
J.
;
Wang
,
N.
;
Liu
,
Q.
Estimating PM2.5 Concentration Using the Machine Learning GA-SVM Method to Improve the Land Use Regression Model in Shaanxi, China
.
Ecotoxicol. Environ. Saf.
2021
,
225, 112772
, doi:.
29.
Belitz
,
K.
;
Stackelberg
,
P.E.
Evaluation of Six Methods for Correcting Bias in Estimates from Ensemble Tree Machine Learning Regression Models
.
Environ. Model. Softw.
2021
,
139, 105006
, doi:.
30.
Chicco
,
D.
;
Warrens
,
M.J.
;
Jurman
,
G.
The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation
.
PeerJ Comput. Sci.
2021
,
7
,
1
24
, doi:.
This content is only available via PDF.
You do not currently have access to this content.