The first signal that a melon is getting ripe is the colour that the rind changes. Unfortunately, it is not the best indicator since the colour is not significantly different between the ripe ones and those that are not. This article verifies the classification between 2 types of melons, young melons and ripe melons, using the Convolutional Neural Network (CNN) method with a dataset of 500 images of the fruits. The dataset is classified into 2 parts, training data and testing data. While the classification method using 2 groups of datasets have been prepared results the accuracy value 99%, the latest melon image dataset input produces an accuracy of 52%. The difference of classification accuracy is 47% since the images are taken at different times and lighting conditions. Therefore, it produces different images and results in different accuracy values.

1.
Prayoga
A.
,
Tawakal
H.A.
,
Aldiansyah
R.
Pengembangan Metode Deteksi Tingkat Kematangan Buah Melon Berdasarkan Tekstur Kulit Buah Dengan Menggunakan Metode Ekstraksi Ciri Statistik Dan Support Vector Machine (Svm
).
Depok Sk. Tinggi Teknol. Terpadu Nurul Fikri
2018
,
4
,
24
30
.
2.
Ahmad
,
U.
,
Sabihah
,
Prediction of Ripeness Parameters of Melon Fruit Using Near Infra-red Spectroscopy
.
J. Ilmu Pertan. Indones.
2018
,
23
,
183
189
, doi: .
3.
Syarief
,
M.
,
Setiawan
,
W.
Convolutional neural network for maize leaf disease image classification
.
Telkomnika (Telecommunication Comput. Electron. Control.
2020
,
18
,
1376
1381
, doi: .
4.
Cecotti
,
H.
,
Rivera
,
A.
,
Farhadloo
,
M.
,
Pedroza
,
M.A.
Grape detection with convolutional neural networks
.
Expert Syst. Appl.
2020
,
159
,
113588
, doi: .
5.
Prasetyo
A.
,
Setyawan
M.B.
Purwarupa Internet of Things Sistem Kewaspadaan Banjir Dengan Kendali Raspberry Pi
.
Netw. Eng. Res. Oper.
2018
,
3
,
201
205
.
6.
Cobantoro
A.F.
,
Setyawan
M.B.
,
Budi
Wibowo
M.A.
Otomasi Greenhouse Berbasis Mikrokomputer RASPBERRY PI
.
J. Ilm. Teknol. Inf. Asia
2019
,
13
,
115
, doi: .
7.
Rokhana
,
R.
,
Priambodo
,
J.
,
Karlita
,
T.
,
Sunarya
,
I.M.G.
,
Yuniarno
,
E.M.
,
Purnama
,
I.K.E.
,
Purnomo
,
M.H.
Convolutional Neural Network untuk Pendeteksian Patah Tulang Femur pada Citra Ultrasonik B–Mode
.
J. Nas. Tek. Elektro dan Teknol. Inf.
2019
,
8
,
59
, doi: .
8.
Agarwal
,
M.
,
Singh
,
A.
,
Arjaria
,
S.
,
Sinha
,
A.
,
Gupta
,
S.
ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network
.
Procedia Comput. Sci.
2020
,
167
,
293
301
, doi: .
9.
Murata
K.
,
Mito
M.
,
Eguchi
D.
,
Mori
Y.
,
Toyonaga
M.
A Single Filter CNN Performance for Basic Shape Classification
.
2018 9th Int. Conf. Aware. Sci. Technol. iCAST 2018
2018
,
139
143
, doi: .
This content is only available via PDF.
You do not currently have access to this content.