This paper deals with experimental investigation of stress corrosion cracking of stainless-steel grade 304 after GTAW welded under simulated environment corrosion. Specimens welded in 60 and 65 Ampere used 5 and 10 L/mnt of Argon shielding gas. Constant tensile load test 4000N and immersed specimen were conducted for 24 hours in Hcl+Aquades solution result variety crack characteristics. After testing, an orange-colored layer of corrosion was seen covering the entire surface. This layer causes corrosion resistance for a certain period of time so that the corrosion process stops. The parameter ampere and shielding gas flow rate affected the crack that occurs. The results of the photo of the microstructure show cracks with the model trans granular at surface and intergranular after crack insert to grains boundaries. Vickers Hardness and Microstructure used to evaluate of welding area. The Lowest ampere of welded result maximum rough crack from surface and The Highest ampere result smooth crack on all of surface.

1.
Anon
, “
Corrosion of Stainless Steels
.,”
Eng.
, vol.
218
, no.
11
, pp.
1207
1209
,
1978
, doi: .
2.
R.
Schoell
et al, “
In situ synchrotron X-ray tomography of 304 stainless steels undergoing chlorine-induced stress corrosion cracking
,” vol.
170
, no. April,
2020
, doi: .
3.
J.
Xin
,
Y.
Song
,
C.
Fang
,
J.
Wei
,
C.
Huang
, and
S.
Wang
, “
Evaluation of inter-granular corrosion susceptibility in 316LN austenitic stainless-steel weldments
,”
Fusion Eng. Des.
, vol.
133
, no. September 2017, pp.
70
76
,
2018
, doi: .
4.
X.
Li
,
J.
Liu
,
J.
Sun
,
X.
Lin
,
C.
Li
, and
N.
Cao
, “
Effect of microstructural aspects in the heat-affected zone of high strength pipeline steels on the stress corrosion cracking mechanism : Part I. In acidic soil environment
,”
Corros. Sci.
, no. June, p.
108167
,
2019
, doi: .
5.
L.
Dong
,
Q.
Peng
,
E.
Han
,
W.
Ke
, and
L.
Wang
, “
Stress Corrosion Cracking in the Heat Affected Zone of a Stainless Steel
,”
Eval. Program Plann.
,
2016
, doi: .
6.
W.
Chung
,
J.
Huang
,
L.
Tsay
, and
C.
Chen
, “
Stress corrosion cracking in the heat-affected zone of A508 steel welds under high-temperature water
,”
J. Nucl. Mater.
, vol.
408
, no.
1
, pp.
125
128
, 2011, doi: .
7.
B. A.
Kessal
,
C.
Fares
,
M. H.
Meliani
,
A.
Alhussein
,
O.
Bouledroua
, and
M.
François
, “
Effect of gas tungsten arc welding parameters on the corrosion resistance and the residual stress of heat affected zone
,”
Eng. Fail. Anal.
, p.
104200
,
2019
, doi: .
8.
B.
Singh
,
P.
Singhal
, and
K. K.
Saxena
, “
Investigation of thermal efficiency and depth of penetration during GTAW process
,”
Mater. Today Proc.
, vol.
18
, pp.
2962
2969
,
2019
, doi: .
9.
Z.
Chen
,
J.
Chen
, and
Z.
Feng
, “
Welding penetration prediction with passive vision system
,”
J. Manuf. Process.
, vol.
36
, no. October, pp.
224
230
,
2018
, doi: .
10.
Y.
Zhang
and
Y.
Wang
, “
The influence of welding mechanical boundary condition on the residual stress and distortion of a stiffened-panel
,”
Mar. Struct.
, vol.
65
, no. February, pp.
259
270
,
2019
, doi: .
11.
M.
Nose
,
H.
Amano
,
H.
Okada
,
Y.
Yusa
, and
A.
Maekawa
, “
Computational crack propagation analysis with consideration of weld residual stresses
,”
Eng. Fract. Mech.
,
2017
, doi: .
12.
P.
Dai
,
Y.
Wang
,
S.
Li
,
S.
Lu
,
G.
Feng
, and
D.
Deng
, “
FEM analysis of residual stress induced by repair welding in SUS304 stainless steel pipe butt-welded joint
,”
J. Manuf. Process.
, vol.
58
, no. August, pp.
975
983
,
2020
, doi: .
13.
M. C.
Smith
,
O.
Muránsky
,
Q.
Xiong
,
P. J.
Bouchard
,
J.
Mathew
, and
C.
Austin
, “
Validated prediction of weld residual stresses in austenitic steel pipe girth welds before and after thermal ageing, part 1: Mock-up manufacture, residual stress measurements, and materials characterisation
,”
Int. J. Press. Vessel. Pip.
, vol.
172
, no. September 2018, pp.
233
250
,
2019
, doi: .
14.
P.
Asadi
,
S.
Alimohammadi
,
O.
Kohantorabi
,
A.
Fazli
, and
M.
Akbari
, “
Effects of material type, preheating and weld pass number on residual stress of welded steel pipes by multi-pass TIG welding (C-Mn, SUS304, SUS316
),”
Therm. Sci. Eng. Prog.
, vol.
16
, no. December 2019, p.
100462
,
2020
, doi: .
15.
F. J.
Cárcel-Carrasco
,
M.
Pascual-Guillamón
,
L. S.
García
,
F. S.
Vicente
, and
M. A.
Pérez-Puig
, “
Pitting 15. corrosion in AISI 304 rolled stainless steel welding at different deformation levels
,”
Appl. Sci.
, vol.
9
, no.
16
,
2019
, doi: .
This content is only available via PDF.
You do not currently have access to this content.