Wood or wood is a natural product of tree processing. Nowadays, the use of wood is decreasing, but some industries still use wood to manufacture their products to maintain product features. In some small industries, there are still errors in the use of wood species in production due to the lack of knowledge of industry players in identifying wood species. This study aims to develop a classification system for identifying wood species by applying transfer learning using a pre-trained model with InceptionV3 and MobileNetV2 architecture as its feature extraction layer. This research’s benefits are making it easier for woodworkers to identify wood types from wood images and speeding up the process of classifying wood types based on wood images. The dataset is 10624 wood images consisting of Agathis, Meranti, and Perupuk. The model used in this study was trained using 7659 images and validated using 1911 images. Performance testing of the classification model using the confusion matrix method was carried out on 1063 wood images. The results showed that the model with the best performance is mobileNetV2 with fine-tuning and 96% accuracy test results.

1.
Anbarjafari
,
G.
Introduction To Image Processing.
https://Sisu.Ut.Ee/Imageprocessing/Book/1. (
2014
).
2.
Azizah
,
L. M.
,
Umayah
,
S. F.
, and
Fajar
,
F.
Deteksi Kecacatan Permukaan Buah Manggis Menggunakan Metode Deep Learning Dengan Konvolusi Multilayer
.
Semesta Teknika
,
21
(
2
),
230
236
. . (
2018
).
3.
Hermawati
,
F. A.
Pengolahan Citra Digital: Konsep Dan Teori. Andi.
(
2013
).
4.
Tan
,
C.
,
Sun
,
F.
,
Kong
,
T.
,
Zhang
,
W.
,
Yang
,
C.
, and
Liu
,
C.
A Survey On Deep Transfer Learning
.
Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence and Lecture Notes In Bioinformatics
),
11141
Lncs
,
270
279
. . (
2018
).
5.
Weiss
,
K.
,
Khoshgoftaar
,
T. M.
, and
Wang
,
D. D.
A Survey Of Transfer Learning
.
Journal Of Big Data
,
3
(
1
),
1
40
. . (
2016
).
6.
Pan
,
S. J.
and
Yang
,
Q.
A Survey On Transfer Learning
.
Ieee Transactions On Knowledge And Data Engineering
,
22
(
10
),
1345
1359
. . (
2010
).
7.
Triwijoyo
,
B. K.
Model Fast Transfer Learning Pada Jaringan Syaraf Tiruan Konvolusional Untuk Klasifikasi Gender Berdasarkan Citra Wajah
.
Matrik : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer
,
18
(
2
),
211
221
. . (
2019
).
8.
Rizki
,
A. M.
and
Marina
,
N.
Klasifikasi Kerusakan Bangunan Sekolah Menggunakan Metode Convolutional Neural Network Dengan Pre-Trained Model Vgg-16
.
Jurnal Ilmiah Teknologi Dan Rekayasa
,
24
(
3
),
197
206
. . (
2019
).
9.
Stephen
,
Raymond
, and
Santoso
,
H. Aplikasi
Convolution Neural Network Untuk Mendeteksi Jenis-Jenis Sampah
.
Explore - Jurnal Sistem Informasi Dan Telematika (Telekomunikasi, Multimedia, Dan Informasi)
,
10
(
2
),
122
132
. . (
2019
).
10.
Gultom
,
Y.
,
Arymurthy
,
A. M.
, and
Masikome
,
R. J.
Batik Classification Using Deep Convolutional Network Transfer Learning
.
Jurnal Ilmu Komputer Dan Informasi
,
11batik Fa
(
2
),
59
. . (
2018
).
11.
Dwiatmoko
,
W.
and
Handaga
,
B.
Perancangan Sistem Pengenalan Jenis Tanaman Obat Dengan Kamera Berbasis Android
.
Eprint Ums.
http://Eprints.Ums.Ac.Id/82661/6/Naspub_WidharDwiatmoko_L200160179_Fixx.Pdf. (
2020
).
12.
Hariyani
,
Y. S.
,
Hadiyoso
,
S.
, and
Siadari
,
T. S.
Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network.
Elkomika: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika
,
8
(
2
),
443
453
. . (
2020
)
13.
Prasetyo
,
E.
,
Purbaningtyas
,
R.
,
Adityo
,
R. D.
,
Prabowo
,
E. T.
, and
Ferdiansyah
,
A. I.
Perbandingan Convolutional Neural Network Untuk Klasifikasi Kesegaran Ikan Bandeng Pada Citra Mata
.
Jurnal Teknologi Informasi Dan Ilmu Komputer (Jtiik)
,
8
(
3
),
601
608
. . (
2021
).
14.
Rochman
,
F.
and
Junaedi
,
H.
Implementasi Transfer Learning Untuk Identifikasi Ordo Tumbuhan Melalui Daun
.
Jurnal Syntax Admiration
,
1
(
6
),
672
679
. https://Jurnalsyntaxadmiration.Com/Index.Php/Jurnal/Article/View/103. (
2020
).
15.
Widyaya
,
J. E.
and
Budi
,
S.
Pengaruh Preprocessing Terhadap Klasifikasi Diabetic Retinopathy Dengan Pendekatan Transfer Learning Convolutional Neural Network
.
Jurnal Teknik Informatika Dan Sistem Informasi
,
7
(
1
),
110
124
. . (
2021
).
16.
Anggiratih
,
E.
,
Siswanti
,
S.
,
Octaviani
,
S. K.
, and
Sari
,
A.
Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 Dengan Transfer Learning
.
Jurnal Ilmiah Sinus
,
19
(
1
),
75
. . (
2021
).
17.
Yani
,
M.
,
Irawan
,
B.
, and
Setiningsih
,
C.
Application Of Transfer Learning Using Convolutional Neural Network Method For Early Detection Of Terry’s Nail
.
Journal Of Physics: Conference Series
,
1201
(
1
),
0
9
. . (
2019
).
18.
Ruuska
,
S.
,
Hämäläinen
,
W.
,
Kajava
,
S.
,
Mughal
,
M.
,
Matilainen
,
P.
, and
Mononen
,
J.
Evaluation Of The Confusion Matrix Method In The Validation Of An Automated System For Measuring Feeding Behaviour Of Cattle
.
Behavioural Processes
,
148, 56–62
. . (
2018
).
19.
Marom
,
N. D.
,
Rokach
,
L.
, and
Shmilovici
,
A.
Using The Confusion Matrix For Improving Ensemble Classifiers
.
2010 Ieee 26th Convention Of Electrical And Electronics Engineers In Israel, Ieeei 2010
,
555
559
. . (
2010
).
This content is only available via PDF.
You do not currently have access to this content.