This study aimed to determine the influence of spindle speed and soluble oil emulsion coolant (SOE) on the surface roughness value of ST37 steel. In this study, the grinding process was performed using a lathe machine with a variety of spindle speeds, and feeding depths were set i.e. 260, 440 rpm for the spindle and 0.1, 0.2, 0.3 mm for feeding depth. Based on the experimental result, the speed spindle variation and coolant used throughout the grinding process affect the surface roughness on the ST 37 steel. The grinding process result with spindle 440 rpm has a roughness value better than spindle 260 in each depth variation. Furthermore, the grinding process using coolant also has smooth surface roughness compared to without coolant. In conclusion, the SOE used during the grinding process successfully decreased the surface roughness value of the workpiece during the grinding turning process at a spindle speed of 260 rpm the lowest roughness was 0.683 µm at a depth grinding of 0.1 mm, and the highest roughness was 0.997 µm in-depth grinding of 0.3 mm. Whereas to the spindle speed of 440 rpm, the lowest surface roughness was 0.316 µm at a depth of 0.1 mm, the highest roughness was 0.551 µm, and the grinding depth was 0.3 mm. Based on the experiment results, we concluded that the workpiece surface has better roughness when the depth of the grinding process is slight with a higher rpm. This is made so that these results contribute to the metal machining industry.

1.
M. M.
Rahman
,
K.
Kadirgama
, and
A. S. Ab
Aziz
,
Int. J. Automot. Mech. Eng.
9
,
1649
(
2014
).
2.
K.
Wegener
,
H. W.
Hoffmeister
,
B.
Karpuschewski
,
F.
Kuster
,
W. C.
Hahmann
, and
M.
Rabiey
,
60
,
757
(
2011
).
3.
C.-S.
Liu
and
Y.-J.
Ou
,
20
,
4092
(
2020
).
4.
B.
Shen
,
G.
Xiao
,
C.
Guo
,
S.
Malkin
, and
A. J.
Shih
,
J. Manuf. Sci. Eng.
130
051014
(
2008
).
5.
S.
Shaji
and
V.
Radhakrishnan
,
Taguchi Method J. Mater. Process. Technol.
141
51
(
2003
).
6.
B.
Shen
,
A. J.
Shih
, and
S. C.
Tung
,
Tribol. Trans.
51
,
730
(
2008
).
7.
A. V.
De Mello
,
R. B.
da Silva
,
C.
Guimaraes
,
R. L.
de Paiva
,
A.
Marques
, and
R.V.
Gelamo
, in
23rd ABCM Int. Congr. Mech
(Eng,
2015
).
8.
A.
Rudi
,
Affandi
, and
Z.
Fuadi
,
J. Rekaya Material, Manufaktur, dan Energi
3
,
16
(
2020
).
9.
I. D.
Marinescu
,
M. P.
Hitchiner
,
E.
Uhlmann
,
W. B.
Rowe
, and
I.
Inasaki
,
Handbook of Machining with Grinding Wheels
(
CRC Press
,
Boca Raton
,
2016
).
10.
S.
Malkin
and
C.
Guo
,
Grinding Technology: Theory and Application of Machining with Abrasives
(
Industrial Press
,
New York, NY
,
2008
).
11.
J. A.
Ghani
,
M.
Rizal
, and
C. H. Che
Haron
,
J. Clean. Prod.
85
, (
2014
).
12.
D. E. P.
Garmo
,
J. T.
Black
, and
R. A.
Kosher
,
Materials and Processes in Manufacturing 7th Edition
(
Maxwell MacMillan Publication, New York
,
USA
,
1984
).
13.
T.
Tawakoli
,
M. J.
Hadad
,
M. H.
Sadeghi
,
A.
Daneshi
,
S.
Stöckert
, and
A.
Rasifard
,
Int. J. Mach. Tools Manuf.
49
,
12
(
2009
).
14.
W.
Stachurski
,
J.
Sawicki
,
R.
Wójcik
, and
K.
Nadolny
,
J. Clean. Prod.
171
892
(
2018
).
15.
B.
Shen
and
A. J.
Shih
, in
Grind. Using Vitr. CBN Wheel. Trans NAMRI/SME
(
2009
), pp.
37
129–36.
16.
V. F.
Silva
,
L.N.
Batista
,
E.
De Robertis
,
C. S.
Castro
,
V. S.
Cunha
, and
M. A.
Costa
,
Anal. Calorim
123
,
973
(
2016
).
17.
A. R.
Nasution
,
Z.
Faudi
,
I.
Hasanuddin
, and
R.
Kurniawan
,
Ser. Mater. Sci. Eng
796
012001
(
2020
).
18.
A.
Afrian
,
Pengaruh Feeding Dan Cutting Fluid Terhadap Kekasaran Permukaan Baja Ems 45 Pada Proses Surface Grinding Tugas Akhir
(
Universitas Negeri Semarang
,
Semarang
,
2016
).
19.
M.
Rundman
,
Mech. Mechatron. Eng.
3
,
361
(
2010
).
20.
R.
Taufiq
, in
Mech. Prod. Eng. FTI – ITB
(
2002
).
21.
B.
Suroso
and
D.
Prayogi
, in
Manufaktur Dan Energi
2
(
2019
), pp.
24
33
.
This content is only available via PDF.
You do not currently have access to this content.