The paper performs analysis of remote laser method capabilities to detect pipeline leaks and makes a comparative estimate of different bands to solve a task of remote detection of propane leaks. Shows that in the spectral band of∼13 µm with at least 0.8 % propane content in the leak (approximately twice less than the flammability limit) the task of pipeline leak detection can be solved with correct detection probability close to one and false alarm probability of∼three decimal places with the propane layer thickness on the ground surface being at least 100 cm.

1.
H.
Devold
,
Oil and gas production handbook
(
ABB Oil and Gas
.
Oslo
,
2013
),
162
p.
2.
P.
Kluczynski
,
S. Lundqvist, S Belahsene, Y. Rouillard, L. Nähle, M. Fischer and J. Koeth, Applied Physics B
108
,
183
188
(
2012
).
3.
G.
Zhang
,
Y.
Li
and
Q.
Li
,
Optics and Lasers in Engineering
48
,
1206
1212
(
2010
).
4.
N.
Kasai
,
C.
Tsuchiya
,
T.
Fukuda
,
K.
Sekine
,
T.
Sano
and
T.
Takehana
,
NDT & E International
44
,
57
60
(
2011
).
5.
N. S.
Prasad
and
A. R.
Geiger
,
Opt. Eng.
35
(
4
),
1105
1111
(
1996
).
6.
Yu. V.
Fedotov
,
M. L.
Belov
,
K. C.
Titarenko
and
V. A.
Gorodnichev
,
IOP Conf. Series: Materials Science and Engineering
1047
,
012171
(
2021
).
7.
V.
Demtreder
,
Laser Spectroscopy
(
Springer-Verlag
:
Berlin Heidelberg NewYork
,
2003
),
917
p.
8.
S. N.
Mikhailenko
,
Yu. L.
Babikov
and
V. F.
Golovko
,
Atmospheric and oceanic optics
18
,
685
695
(
2005
).
9.
Hedgehog
,
Compact, Rapid-Scan, Tunable Mid-IR CW/Pulsed Lasers
. available at: http://www.laser2000.co.uk
This content is only available via PDF.
You do not currently have access to this content.