Automatic grouping (clustering) involves dividing a set of objects into subsets (groups) so that objects from one subset are more similar to each other than to objects from other subsets according to some criterion. There are industries where data come in the form of a stream, i.e. a sequence of potentially infinite, non-stationary data arriving continuously. In our study, we propose a greedy agglomerative heuristic algorithm with distance measure variations for online products clustering. Computational experiments demonstrate the comparative efficiency and accuracy of using the greedy agglomerative heuristic in online clustering of industrial products into homogeneous production batches.

1.
A. S.
Shirkhorshidi
,
S.
Aghabozorgi
and
T.
Wah
,
PLOS ONE
10
(
12
),
e0144059
(
2015
).
2.
L.
Youguo
and
W.
Haiyan
,
Physics Procedia
25
,
1104
1109
(
2012
).
3.
H.
Steinhaus
,
Bull. Acad. Polon. Sci. Cl.
III
(
IV
),
801
804
(
1956
).
4.
E.
Weiszfeld
and
F.
Plastria
,
Ann. Oper. Res.
167
(
1
),
7
41
(
2009
).
5.
T.
Nicholson
,
J. Inst. Math. Appl.
13
,
362
375
(
1965
).
6.
S. P.
Lloyd
,
IEEE Trans. Inf. Theory
28
,
129
137
(
1982
).
7.
M.
Golasowski
,
J.
Martinovič
and
K.
Slaninová
, “Comparison of 
K-means Clustering Initialization Approaches with Brute-Force Initialization”
, in
Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing
567
, (
pSpringer
,
Singapore
,
2017
), pp.
103
114
.
8.
D.
Mustafi
and
G.
Sahoo
,
Soft Comput.
23
(
15
),
6361
6378
(
2019
).
9.
C. C.
Agarwal
,
J. B.
Orlin
and
R.P.
Tai
,
Oper. Res.
45
(
2
),
226
234
(
1997
).
10.
L. A.
Kazakovtsev
and
A. N.
Antamoshkin
,
Informatica
38
(
3
),
229
240
(
2014
).
11.
H.
Alfeilat
,
A.
Hassanat
,
O.
Lasassmeh
,
A.
Tarawneh
,
M.
Alhasanat
,
H.
Salman
, and
V.
Prasath
,
Big Data
7
(
4
),
221
248
(
2019
).
12.
D. J.
Weller-Fahy
,
B. J.
Borghetti
and
A. A.
Sodemann
,
IEEE Commun. Surv. Tutor.
17
(
1
), pp.
70
91
(
2015
).
13.
G.
McLachlan
,
Resonance
4
,
20
26
(
1999
).
14.
A.
Zuraboglu
and
V.
Atalay
, “
Data Stream Clustering: A Review
” (
2007
), available at https://arxiv.org/abs/2007.10781 (accessed 24/10/21)
15.
F.
Cao
,
M.
Ester
,
W.
Qian
, and
A.
Zhou
, “
Density-based clustering over an evolving data stream with noise
”, in
Proceedings of the SDM
(
2006
), pp.
328
339
.
16.
J.
Akhter
,
M. M.
Ahmed
and
M.
Samsuddoha
, "
Online Clustering Technique with Adaptable Threshold and Radius for Evolving Data Stream
,"
2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI)
,
2021
, pp.
1
6
17.
M.
Spiliopoulou
,
I.
Ntoutsi
,
Y.
Theodoridis
and
R.
Schult
, “
Monic: modeling and monitoring cluster transitions
”, in
Proceedings of the SIGKDD
(
2006
), pp.
706
711
.
18.
M.
Oliveira
and
J.
Gama
,
Intell. Data Anal.
16
(
1
),
93
111
(
2012
).
19.
T.
Kohonen
,
Self-Organizing Maps
(
Springer-Verlag
,
Berlin
1995
).
20.
Shkaberina
G.S.
,
Orlov
V.I.
,
Tovbis
E.M.
,
Kazakovtsev
L.A.
, “
On the Optimization Models for Automatic Grouping of Industrial Products by Homogeneous Production Batches
”, in
Mathematical Optimization Theory and Operations Research 2020,
Communications in Computer and Information Science
1275
, edited by
Y.
Kochetov
, et al
. (
Springer
,
Cham
.,
2020
), pp.
421
436
.
This content is only available via PDF.
You do not currently have access to this content.