Automatic grouping (clustering) involves dividing a set of objects into subsets (groups) so that objects from one subset are more similar to each other than to objects from other subsets according to some criterion. There are industries where data come in the form of a stream, i.e. a sequence of potentially infinite, non-stationary data arriving continuously. In our study, we propose a greedy agglomerative heuristic algorithm with distance measure variations for online products clustering. Computational experiments demonstrate the comparative efficiency and accuracy of using the greedy agglomerative heuristic in online clustering of industrial products into homogeneous production batches.
REFERENCES
1.
A. S.
Shirkhorshidi
, S.
Aghabozorgi
and T.
Wah
, PLOS ONE
10
(12
), e0144059
(2015
).2.
L.
Youguo
and W.
Haiyan
, Physics Procedia
25
, 1104
–1109
(2012
).3.
4.
E.
Weiszfeld
and F.
Plastria
, Ann. Oper. Res.
167
(1
), 7
–41
(2009
).5.
6.
S. P.
Lloyd
, IEEE Trans. Inf. Theory
28
, 129
–137
(1982
).7.
M.
Golasowski
, J.
Martinovič
and K.
Slaninová
, “Comparison of K-means Clustering Initialization Approaches with Brute-Force Initialization”
, in Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing
567
, (pSpringer
, Singapore
, 2017
), pp.103
–114
.8.
D.
Mustafi
and G.
Sahoo
, Soft Comput.
23
(15
), 6361
–6378
(2019
).9.
C. C.
Agarwal
, J. B.
Orlin
and R.P.
Tai
, Oper. Res.
45
(2
), 226
–234
(1997
).10.
11.
H.
Alfeilat
, A.
Hassanat
, O.
Lasassmeh
, A.
Tarawneh
, M.
Alhasanat
, H.
Salman
, and V.
Prasath
, Big Data
7
(4
), 221
–248
(2019
).12.
D. J.
Weller-Fahy
, B. J.
Borghetti
and A. A.
Sodemann
, IEEE Commun. Surv. Tutor.
17
(1
), pp. 70
–91
(2015
).13.
G.
McLachlan
, Resonance
4
, 20
–26
(1999
).14.
A.
Zuraboglu
and V.
Atalay
, “Data Stream Clustering: A Review
” (2007
), available at https://arxiv.org/abs/2007.10781 (accessed 24/10/21)15.
F.
Cao
, M.
Ester
, W.
Qian
, and A.
Zhou
, “Density-based clustering over an evolving data stream with noise
”, in Proceedings of the SDM
(2006
), pp. 328
–339
.16.
J.
Akhter
, M. M.
Ahmed
and M.
Samsuddoha
, "Online Clustering Technique with Adaptable Threshold and Radius for Evolving Data Stream
," 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI)
, 2021
, pp. 1
–6
17.
M.
Spiliopoulou
, I.
Ntoutsi
, Y.
Theodoridis
and R.
Schult
, “Monic: modeling and monitoring cluster transitions
”, in Proceedings of the SIGKDD
(2006
), pp. 706
–711
.18.
M.
Oliveira
and J.
Gama
, Intell. Data Anal.
16
(1
), 93
–111
(2012
).19.
20.
Shkaberina
G.S.
, Orlov
V.I.
, Tovbis
E.M.
, Kazakovtsev
L.A.
, “On the Optimization Models for Automatic Grouping of Industrial Products by Homogeneous Production Batches
”, in Mathematical Optimization Theory and Operations Research 2020,
Communications in Computer and Information Science
1275
, edited by Y.
Kochetov
, et al. (Springer
, Cham
., 2020
), pp. 421
–436
.
This content is only available via PDF.
© 2023 Author(s).
2023
Author(s)
You do not currently have access to this content.