The community#x2019;s views and inputs have always been the main and most beneficial source for varied range of enterprises. With more widespread community media, it provides a spectacular study and assessment of many fields in which companies used to have faith in peculiar, exhausting and inaccurate ways. This form of analysis is subclass of #x2019;sentence analysis#x2019; area. Sentiment analysis is a broad term that refers to the process of effectively classifying user-generated content into specific polarities. To perform sentiment identification and analysis, a variety of tools and techniques are available, includes supervised techniques for machine-learning that classify the target group after training in data. Hybrid instruments are a blend of machine learning and lexicon-based algorithms, which classify according to annotated dictionary. We employed the SVM with Weka for analyzing sentiments in this paper. Two pre-categorized datasets of tweets are utilized. The performance of SVM is analyzed with the help of analytical metrics.

1.
Altawaier
,
M. M.
and
Tiun
,
S.
,
International Journal on Advanced Science
,
6
(
6
), pp.
1067
#x2013;
1073
, (
2016
).
2.
Sharma
,
A.
and
Dey
,
S.
, #x201C;
A boosted SVM based sentiment analysis approach for online opinionated text
#x201D;, In
Proceedings of the 2013 Research in Adaptive and Convergent Systems ACM
, (
2013
).
3.
Holmes
,
G.
,
Donkin
,
A.
and
Witten
,
I. H.
#x201C;
Weka: A machine learning workbench
#x201D;, In
Intelligent Information Systems, Proceedings of the 1994 Second Australian and New Zealand Conference
, (
1994
).
4.
Singh
,
V. K.
,
Piryani
,
R.
,
Uddin
,
A.
and
Waila
,
P.
, #x201C;Sentiment analysis of textual reviews; Evaluating machine learning, unsupervised and SentiWordNet approaches#x201D;, In
Knowledge and Smart Technology (KST), 5th International Conference
.
IEEE
., (
2013
).
5.
Pang
,
B.
and
Lee
,
L.
,
Foundations and Trends#x00AE; in Information Retrieval
,
2
(
1#x2013;2
),
1
#x2013;
135
, (
2008
).
6.
Liu
,
S.
,
Li
,
F.
,
Li
,
F.
,
Cheng
,
X.
and
Shen
,
H.
, #x201C;Adaptive co-training SVM for sentiment classification on tweets#x201D;, In
Proceedings of the 22nd ACM international conference on Information #x0026; Knowledge Management
ACM
., (
2013
).
7.
Zainudin
,
S.
,
Jasim
,
D. S.
, and
Bakar
,
A. A.
,
#x201C;International Journal on Advanced Science, Engineering and Information Technology#x201D;
,
6
(
6
),
1148
#x2013;
1153
, (
2016
).
8.
Saif
,
H.
,
He
,
Y.
,
Fernandez
,
M.
and
Alani
,
H.
,
#x201C;Information Processing #x0026; Management#x201D;
,
52
(
1
), pp
5
#x2013;
19
, (
2016
).
9.
Mueen
,
A.
,
Zafar
,
B
and
Manzoor
,
U.
,
#x201C;International Journal of Modern Education and Computer Science#x201D;
,
8
(
11
), pp.
36
. (
2016
).
10.
Alfina
,
I.
,
Sigmawaty
,
D.
,
Nurhidayati
,
F.
and
Hidayanto
,
A. N.
, #x201C;Utilizing Hashtags for Sentiment Analysis of Tweets in The Political Domain#x201D;, In
Proceedings of the 9th International Conference on Machine Learning and Computing
ACM
, (
2017
).
11.
Liu
,
B.
,
#x201C;Synthesis lectures on human language technologies#x201D;
,
5
(
1
),
1
#x2013;
167
. (
2012
).
12.
Balage Filho
,
P
. and
Pardo
,
T.
, #x201C;
NILC_USP: #x201C;A Hybrid System for Sentiment Analysis in Twitter Messages
#x201D;,
In SemEval
@ NAACL-HLT, (
2013
).
13.
Malandrakis
,
N.
,
Kazemzadeh
,
A.
,
Potamianos
,
A.
and
Narayanan
,
S
, #x201C;
SAIL: A hybrid approach to sentiment analysis
#x201D;,
In SemEval
@ NAACL-HLT, (
2013
).
14.
Mudinas
,
A.
,
Zhang
,
D.
and
Levene
,
M.
, #x201C;
Combining lexicon and learning based approaches for concept-level sentiment analysis
#x201D;,
In Proceedings of the First International Workshop on Issues of Sentiment Discovery and Opinion Mining
, (
2012
).
15.
Pang
,
B.
,
Lee
,
L.
and
Vaithyanathan
,
S.
#x201C;Thumbs up?: sentiment classification using machine learning techniques#x201D;,
In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-
volume
10
,
Association for Computational Linguistics
, (
2016
).
16.
Arora
,
R.
,
#x201C;International Journal of Computer Applications#x201D;
,
54
(
13
), (
2012
).
17.
Ahmad
M
,
Aftab
S
,
Ali
I.
,
#x201C;International Journal of Computer Applications#x201D;
, volume
177
#x2013; N
o.5
, pp.
25
#x2013;
29
, (
2017
).
18.
Al Amrani
,
Yassine
,
Mohamed
Lazaar
, and
Kamal Eddine
El Kadiri
,
International Journal of Electrical #x0026; Computer Engineering
, (2088-8708)
8.6
(
2018
).
This content is only available via PDF.
Published by AIP Publishing.
You do not currently have access to this content.