The present paper is framed to focus on a nondifferentiable multiobjective semi-infinite programming problem and to establish sufficient optimality conditions from the standpoint of higher-order convexity and Clarke’s subdifferentials assumptions. These optimality conditions are illustrated by a nontrivial example. Subsequently, weak, strong and strict converse duality theorems are established in order to relate the strict minimizer (maximizer) of order m of primal and mixed type multiobjective dual model.
Topics
Duality theorems
REFERENCES
1.
G.
Bhatia
, J. Math. Anal. Appl.
3421
, 135
–145
(2008
).2.
3.
G.
Caristi
and N.
Kanzi
, Int. J. Math. Anal.
9
, 39
, 1929
–1938
(2015
).4.
T. D.
Chuong
and D. S.
Kim
, J. Optim. Theory Appl.
, 160
, 3
, 748
–762
(2014
).5.
6.
L.
Cromme
, Numer. Math.
, 29
, 2
, 179
–194
(1977
).7.
8.
X. Y.
Gao
, Journal of Networks
, 8
, 2
, 413
–420
(2013
).9.
M. A.
Goberna
and M. A.
López
, Linear Semi-infinite Optimization
, (Wiley
, Chichester
, 1998
).10.
M. A.
Goberna
and M. A.
López
(Eds.), Semi-Infinite Programming: Recent Advances
, (Kluwer Academic Publishers
, Dordrecht
, 2001
).11.
A.
Jayswal
, V.
Singh
and I.
Ahmad
, Int. J. Math. Oper. Res.
, 11
, 2
, 204
–218
(2017
).12.
A.
Jourani
, J. Optim. Theory Appl.
, 81
, 3
, 533
–548
(1994
).13.
N.
Kanzi
and S.
Nobakhtian
, Optimization
, 59
, 5
, 717
–727
(2010
).14.
N.
Kanzi
and S.
Nobakhtian
, Optim. Lett.
, 8
, 4
, 1517
–1528
(2014
).15.
S.
Karmardian
, J. Optim. Theory Appl.
, 4
, (1969
)2
, 87
–98
.16.
G. H.
Lin
and M.
Fukushima
, J. Optim. Theory Appl.
, 118
, 1
, 67
–80
(2003
).17.
M.
López
and G.
Still
, European J. Oper. Res.
, 180
, 2
, 491
–518
(2007
).18.
R.
Reemtsen
and J. J. Rü
ckmann
, Semi-infinite programming. Nonconvex Optimization and its Applications
, (Kluwer Academic Publishers
, Boston
, 25
(1998
)).19.
A.
Shapiro
, Optimization
, 58
, 2
, 133
–161
(2009
).20.
S. K.
Suneja
, S.
Sharma
and M.
Kapoor
, Appl. Math.
, 6
, 1
, 7
–19
(2015
).21.
22.
V.
Singh
, A.
Jayswal
, S.
Al-Homidan
and I.
Ahmad
, Asian-Eur. J. Math.
, 13
, 1
, 2050020
(2020
).
This content is only available via PDF.
© 2023 AIP Publishing LLC.
2023
AIP Publishing LLC
You do not currently have access to this content.