Viscous incompressible fluid flow in the middle of two co-axial infinite rotating porous discs is being investigated. Here flow is considered time dependent. Also, fluid is being injected through lower disc which is considered for equal to rate of suction of fluid through upper disc. The discs are rotating in the planes z = 0 and z = d (t), where L and have dimensions of length and t-1, respectively and t is the time. Different angular velocities are being taken for both the discs. It is also assumed that the lower disc is isothermal. Heat transfer analysis is also being carried out in the study. Mathematical model of the problem is being solved using perturbation method to get exact solution of the problem. Results are depicted with the help of graphs and tables for fluid flow velocities as well as for temperature.

1.
A.
Merah
,
R.
Kelaiaia
, and
F.
Mokhtari
,
Electrical and Mechanical Engineering
,
11
,
79
86
(
2019
).
2.
B.G.
Prasad
and
A.
Kumar
,
International Journal Of Computational Science and Mathematics
,
2
,
381
390
(
2010
).
3.
C.
Wang
,
Quarterly of Applied Mathematics
,
34
(
1
),
29
38
(
1976
).
4.
E.
Hamza
and
D.
Macdonald
,
Quarterly of Applied Mathematics
,
41
(
4
),
495
511
(
1984
).
5.
E.
Osalusi
,
J.
Side
, and
R.
Harris
,
Int. Commun. Heat Mass Transf.
,
35
,
908
915
(
2008
).
6.
F. N.
Ibrahim
,
Journal of Physics D: Applied Physics
,
24
,
8
(
1991
).
7.
H.
Poonia
and
R. C.
Chaudhary
,
International Journal of Engineering Research & Technology
,
3
,
736
743
(
2014
).
8.
J. M.
Lopez
,
Physics of Fluids
,
8
(
10
),
2605
2613
(
1996
).
9.
J. M.
Owen
and
R.H.
Rogers
,
Journal of Fluid Mechanics
,
343
,
407
411
(
1997
).
10.
K. A.
Maleque
and
M. A.
Sattar
,
International Journal Of Heat And Mass Transfer
,
48
(
23-24
),
4963
4972
(
2005
).
11.
K.
Gowthami
,
P. H.
Prasad
,
B.
Mallikarjuna
, and
O. D.
Makinde
,
Songklanakarin J. SCI. Technol.
,
42
(
2
),
391
397
(
2020
).
12.
L. A.
Oliveira
,
J.
Pécheux
, and
M.C.
Silva
,
Theoret. Comput. Fluid Dynamics
,
4
,
119
127
(
1993
).
13.
M.
Guria
,
B. K.
Das
,
R. N.
Jana
and
S. K.
Ghosh
,
International Journal of Dynamics of Fluids
,
7
,
25
(
2011
).
14.
M.
Guria
,
S.
Das
, and
R. N.
Jana
,
International Journal of Non-Linear Mechanics
,
42
(
10
),
1204
1209
(
2007
).
15.
M.
Kilic
,
X.
Gan
, and
J. M.
Owen
,
Journal of Fluid Mechanics
,
281
,
119
135
(
1994
).
16.
M.
Turkyilmazoglu
,
Physics of Fluids
,
28
(
4
),
043601
(
2016
).
17.
R.
Jana
,
M.
Maji
,
S.
Das
,
S. L.
Maji
and
S. K.
Ghosh
,
World Journal of Mechanics
,
01
(
02
),
50
56
(
2011
).
18.
R. M.
Terrill
, R.M. and
J. P.
Cornish
,
Journal of Applied Mathematics and Physics (ZAMP)
24
,
676
688
(
1973
).
19.
S.
Kumar
,
N. P.
Pai
and
A.
Ramnarayan
,
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
,
58
,
161
172
(
2019
).
20.
S. V.
Parter
,
Eckhaus
W.
,
de Jager
E.M.
(eds)
theory and applications of singular perturbations
” in
Lecture Notes in Mathematics
,
942
(
1982
).
21.
T.
Tagawa
,
Fluid Mechanics
,
2
,
13
27
(
2016
).
22.
A.
Das
,
Procedia Engineering
,
127
,
377
382
(
2015
).
23.
A. R.
Elcrat
,
Archive for Rational Mechanics and Analysis
,
73
(
1
),
63
68
(
1980
).
24.
A. R.
Wehgal
, and
M.
Ashraf
,
Punjab University Journal of Mathematics
,
44
,
9
21
(
2012
).
25.
H. V.
Ersoy
,
Advances in Mechanical Engineering
,
6
,
347196
(
2014
).
26.
H. V.
Ersoy
,
Open Journal of Applied Sciences
, 2018,
8
,
159
169
(
2018
).
27.
N.
Freidoonimehr
,
M. M.
Rashidi
,
S.
Abelman
, and
G.
Lorenzini
,
Entropy
,
18
,
1
19
(
2016
).
28.
S.
Bilal
,
A.
Tassaddiq
,
A. H.
Majeed
,
K. S.
Nisar
,
F.
Ali
, and
M. Y.
Malik
,
Frontiers in Physics
,
7
(
2020
).
29.
S.
Das
,
B. C.
Sarkar
and
R. N.
Jana
,
International Journal of Computer Applications
(0975 –8887),
84
,
10
16
(
2013
).
30.
X.
Gan
,
M.
Kilic
, and
J. M.
Owen
,
Journal of Fluid Mechanics
,
281
,
119
135
(
1994
).
This content is only available via PDF.
Published by AIP Publishing.
You do not currently have access to this content.