Quadratic stochastic operator (QSO) was initiated by Bernstein in the early 20th century as the mathematical investigation on population genetics, involving the synthesis of Mendelian law of crossing and Galtonian law of regression. Since then, the study of QSO has been significantly developed for decades to describe dynamical systems in many areas. In this paper, we construct a Poisson quadratic stochastic operator generated by a 2-measurable partition with three different parameters defined on countable state space X={0, 1, 2, …}. The main objective of this research is to study the trajectory behaviour of such operators by reducing the dynamical systems into a one-dimensional setting corresponding to the number of measurable partitions. Some cases of 2-measurable partition generated by singleton and two points with three different defined parameters will be presented. To investigate their trajectory behaviour, we may apply the functional analysis within the measure and probability theory. We shall provide both computational and analytical results, which show that the Poisson QSO generated by a 2-measurable partition with three different parameters, i.e., λl≠λ2≠λ3 is either a regular or nonregular transformation for some parameters λi∈(0, ) for i=1,2,3.

1.
S. N.
Bernstein
,
Uchn Zap. NI Kaf Ukr Otd Mat
1
,
83
115
(
1924
).
2.
R. N.
Ganikhodjaev
,
Russ. Acad. Sci. Sb. Math
76
,
489
506
(
1993
).
3.
R.
Ganikhodzhaev
,
F.
Mukhamedov
, and
U.
Rozikov
,
Infin. Dimens. Anal. Quantum Probab. Relat. Top.
14
(
2
),
279
335
(
2011
).
4.
Y. I.
Lyubich
,
Mathematical structures in population genetics
(
Springer
,
Berlin
,
1992
).
5.
N. N.
Ganikhodzhaev
and
D. V.
Zanin
,
Russ. Math. Surv.
59
(
3
),
161
162
(
2004
).
6.
F.
Mukhamedov
,
M.
Saburov
, and
A. H.
Mohd Jamal
,
Int. J. Mod. Phys. Conf. Ser.
9
,
299
307
(
2012
).
7.
F.
Mukhamedov
,
I.
Qaralleh
, and
W. N. F. A.
Wan Rozali
,
Sains Malaysiana
43
(
8
),
1275
1281
(
2014
).
8.
F.
Mukhamedov
and
A. F.
Embong
,
J. Inequalities Appl.
2015
(
1
), (
2015
).
9.
M.
Saburov
and
N. A.
Yusof
,
Methods Funct. Anal. Topol.
24
(
3
),
255
264
(
2018
).
10.
F.
Mukhamedov
,
Russ. Math. Surv.
55
(
6
),
1161
1162
(
2000
).
11.
N.
Ganikhodjaev
and
N. Z. A.
Hamzah
, “
On Gaussian Nonlinear Transformations
”,
AIP Conference Proceedings
1682
,
040009
(
2015
).
12.
N.
Ganikhodjaev
and
N. Z. A.
Hamzah
, “
Geometric quadratic stochastic operator on countable infinite set
”,
AIP Conference Proceedings
1643
,
706
712
(
2015
).
13.
N.
Ganikhodjaev
and
N. Z. A.
Hamzah
,
The Scientific World Journal,
USA
:
Hindawi Publisher
,
2014
.
14.
N.
Ganikhodjaev
and
N. Z. A.
Hamzah
, “
On Volterra quadratic stochastic operators with continual state space
”,
AIP Conference Proceedings
1660
,
050025
(
2015
).
15.
N.
Ganikhodjaev
and
N. Z. A.
Hamzah
,
J. Phys. Conf. Ser.
819
, (
2017
).
16.
N. Z. A.
Hamzah
and
N.
Ganikhodjaev
, “
On non-ergodic Gaussian quadratic stochastic operators
”,
AIP Conference Proceedings
1974
, (
2018
).
17.
N.
Ganikhodjaev
and
N. Z. A.
Hamzah
,
Indian J. Sci. Technol.
8
(
30
), (
2015
).
18.
N.
Ganikhodjaev
,
R.
Muhitdinov
, and
M.
Saburov
,
Bull. Korean Math. Soc.
54
(
2
),
607
618
(
2017
).
19.
S. N.
Karim
,
N. Z. A.
Hamzah
, and
N.
Ganikhodjaev
,
Malaysian J. Fundam. Appl. Sci.
15
(
6
),
872
877
(
2019
).
20.
S. N.
Karim
,
N. Z. A.
Hamzah
, and
N.
Ganikhodjaev
,
Malaysian J. Fundam. Appl. Sci.
16
(
3
),
281
285
(
2020
).
21.
Y. I.
Lyubich
, in
Mathematical Economics and Functional Analysis
(
Nauka
,
Moscow
,
1974
), pp.
109
138
.
This content is only available via PDF.
You do not currently have access to this content.