This paper addressed the fuzzy logic and integrated Dijkstra’s algorithm to determine an efficient path for travel routes planning. Dijkstra’s algorithm is the same as Breadth-First Search (BFS) algorithm, i.e. queuing principle, but the queue in Dijkstra’s Algorithm is a priority queue. The research methodology consists of data collection, clustering, fuzzy logic modelling, implementation of the Dijkstra algorithm, and testing the results. The collected data in this paper is the distance and travel time. Data clustering is needed to classify time data based on congestion level because travel time data is dynamic. The results of the clustering become a reference for selecting the time in collecting travel time data. The time represents the current state of the traffic. Fuzzy logic modelling is done after all the required data has been collected. This paper uses the Tsukamoto fuzzy method because this method has tolerance for data and is very flexible. The data is developed into a mathematical model to produce a crisp output (i.e. travel weight). The crisp output is then processed with Dijkstra’s algorithm to produce a solution that solves the problem in this paper. The final result of this research is that fuzzy logic and integrated Dijkstra’s algorithm is ideal for efficient pathfinding because it always gives the most efficient results from all possible paths available with the existing problem constraints.

1.
Ramadhan
Z.
,
Zarlis
M.
,
Efendi
S.
,
Siahaan
APU
.
Perbandingan Algoritma Prim dengan Algoritma Floyd-Warshall dalam Menentukan Rute Terpendek (Shortest Path Problem
).
JURIKOM (Jurnal Ris Komputer)
.
2018
;
5
(
2
):
135
9
.
2.
Hutasoit
ETH
.
Pencarian Rute Terpendek Menggunakan Algoritma Bellman-Ford (Studi Kasus: PT. JNE Medan
).
J Sist Komput dan Inform.
2019
;
1
(
1
):
20
5
.
3.
Dalem
IBGWA
.
Penerapan algoritma A*(Star) menggunakan graph untuk menghitung jarak terpendek
.
J Resist (Rekayasa Sist Komputer)
.
2018
;
1
(
1
):
41
7
.
4.
Prasetyo
BIA
,
Maslan
A.
Analisis Perbandingan Pada Algoritma Bellman Ford Dan Dijkstra Pada Google Map
.
Khazanah Ilmu Berazam.
2020
;
3
(
2
):
337
49
.
5.
Umar
R.
,
Yudhana
A.
,
Prayudi
A.
Analisis Perbandingan Algoritma Djikstra, A-Star, dan Floyd Warshall dalam Pencarian Rute Terdekat pada Objek Wisata Kabupaten Dompu
.
J Teknol Inf dan Ilmu Komput.
2021
;
8
(
2
):
227
34
.
6.
Lubis
HS
.
Perbandingan Algoritma Greedy dan Dijkstra untuk menentukan lintasan terpendek
.
Dep Mat Univ Sumatera Utara, Medan.
2009
;
7.
Golnarkar
A.
,
Alesheikh
AA
,
Malek
MR
.
Solving best path problem on multimodal transportation networks with fuzzy costs
.
Iran J Fuzzy Syst.
2010
;
7
(
3
):
1
13
.
8.
Jang
J-SR
,
Sun
C-T
,
Mizutani
E.
Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]
.
IEEE Trans Automat Contr.
1997
;
42
(
10
):
1482
4
.
9.
Wang
L-X.
A course in fuzzy systems and control
.
Prentice-Hall, Inc
.;
1997
.
10.
Sari
NR
,
Mahmudy
WF
.
Fuzzy inference system Tsukamoto untuk menentukan kelayakan calon pegawai
.
SESINDO 2015.
2015
;
2015
.
11.
Maryaningsih
M.
,
Siswanto
S.
,
Mesterjon
M.
Metode Logika Fuzzy Tsukamoto Dalam Sistem Pengambilan Keputusan Penerimaan Beasiswa
.
J Media Infotama.
2013
;
9
(
1
).
12.
Ross
TJ
.
Fuzzy logic with engineering applications
.
John Wiley & Sons
;
2004
.
13.
Deng
Y.
,
Chen
Y.
,
Zhang
Y.
,
Mahadevan
S.
Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment
.
Appl Soft Comput.
2012
;
12
(
3
):
1231
7
.
14.
Lee
W-M.
Python machine learning
.
John Wiley & Sons
;
2019
.
This content is only available via PDF.
You do not currently have access to this content.