From late 2019 to March 2020, a new type of virulent coronavirus called SARS-CoV-2 came into the world. It spread as an extensive and massive pandemic outbreak in various parts of the world, both developed and developing countries. This pandemic has attacked many countries globally, especially the second wave of attacks of the Delta variant during the period March to June 2021, which has increased the number of infection victims, both confirmed and dead. In addition, the second wave phenomenon also creates worrying vulnerabilities in health facilities in various parts of the world, especially in India, Indonesia and even the USA and South America countries with all its impacts on their lives. Massive efforts worldwide to end the pandemic, including preventing the spread of SARS-CoV-2, vaccinations, antiviral drugs, and even symptom relief, are still underway. However, there is no effective treatment to save severe patients, both lung infection and hyperinflammatory effects. From the various genetic and characteristic analyzes of SARS-CoV-2 that have been carried out, it was found that the spike protein (S) increases the positive charge around the viral receptor or the ACE2 enzyme, even until it infiltrates the lungs. Empirically, this study develops a hypothesis that the PUVICO3 technology studied so far can provide moist oxygen anion (O2−[H2O]n) in a low ozone environment (< 0.5 ppm). Exposure to UV-C irradiation of±80 W/m2 can help neutralize viral spike protein (S) in the respiratory tract until it reaches the lungs. It changes the lung environment to a neutral or better condition and can further facilitate increased oxygen tension in the blood. These physical changes can effectively reduce viral loads, and further help patients recover from infections more quickly.

1.
Wang
X.
,
Zhou
Q.
,
He
Y.
,
Liu
L.
,
Ma
X.
,
Wei
X.
,
Jiang
N.
Nosocomial outbreak of 2019 novel coronavirus
.
Eur Respir J.
2020
;
2.
Fajnzylber
J.
,
Regan
J.
,
Coxen
K.
,
Corry
H.
,
Wong
C.
,
Rosenthal
A.
,
Worrall
D.
,
Giguel
F.
,
Piechocka-Trocha
A.
,
Atyeo
C.
,
Fischinger
S.
,
Chan
A.
,
Flaherty
K.T.
,
Hall
K.
,
Dougan
M.
,
Ryan
E.T.
,
Gillespie
E.
,
Chishti
R.
,
Li
Y.
,
Jilg
N.
,
Hanidziar
D.
,
Baron
R.M.
,
Baden
L.
,
Tsibris
A.M.
,
Armstrong
K.A.
,
Kuritzkes
D.R.
,
Alter
G.
,
Walker
B.D.
,
Yu
X.
,
Li
J.Z.
,
Abayneh
B.A.
(
Betty
.,
Allen
P.
,
Antille
D.
,
Balazs
A.
,
Bals
J.
,
Barbash
M.
,
Bartsch
Y.
,
Boucau
J.
,
Boyce
S.
,
Braley
J.
,
Branch
K.
,
Broderick
K.
,
Carney
J.
,
Chevalier
J.
,
Choudhary
M.C.
,
Chowdhury
N.
,
Cordwell
T.
,
Daley
G.
,
Davidson
S.
,
Desjardins
M.
,
Donahue
L.
,
Drew
D.
,
Einkauf
K.
,
Elizabeth
S.
,
Elliman
A.
,
Etemad
B.
,
Fallon
J.
,
Fedirko
L.
,
Finn
K.
,
Flannery
J.
,
Forde
P.
,
Garcia-Broncano
P.
,
Gettings
E.
,
Golan
D.
,
Goodman
K.
,
Griffin
A.
,
Grimmel
S.
,
Grinke
K.
,
Hartana
C.A.
,
Healy
M.
,
Heller
H.
,
Henault
D.
,
Holland
G.
,
Jiang
C.
,
Jordan
H.
,
Kaplonek
P.
,
Karlson
E.W.
,
Karpell
M.
,
Kayitesi
C.
,
Lam
E.C.
,
LaValle
V.
,
Lefteri
K.
,
Lian
X.
,
Lichterfeld
M.
,
Lingwood
D.
,
Liu
H.
,
Liu
J.
,
Lopez
K.
,
Lu
Y.
,
Luthern
S.
,
Ly
N.L.
,
MacGowan
M.
,
Magispoc
K.
,
Marchewka
J.
,
Martino
B.
,
McNamara
R.
,
Michell
A.
,
Millstrom
I.
,
Miranda
N.
,
Nambu
C.
,
Nelson
S.
,
Noone
M.
,
Novack
L.
,
O’Callaghan
C.
,
Ommerborn
C.
,
Osborn
M.
,
Pacheco
L.C.
,
Phan
N.
,
Pillai
S.
,
Porto
F.A.
,
Rassadkina
Y.
,
Reissis
A.
,
Ruzicka
F.
,
Seiger
K.
,
Selleck
K.
,
Sessa
L.
,
Sharpe
A.
,
Sharr
C.
,
Shin
S.
,
Singh
N.
,
Slaughenhaupt
S.
,
Sheppard
K.S.
,
Sun
W.
,
Sun
X.
,
Suschana
E
(Lizzie),
Talabi
O.
,
Ticheli
H.
,
Weiss
S.T.
,
Wilson
V.
,
Zhu
A.
SARS-CoV-2 viral load is associated with increased disease severity and mortality
.
Nat Commun.
2020
;
11
(
1
):
1
9
.
3.
Badhe
R. V.
,
Nipate
S.S.
The use of negative oxygen ion clusters [O2−(H2O)n] and bicarbonate ions [HCO3−] as the supportive treatment of COVID-19 infections: A possibility
.
Med Hypotheses [Internet].
2021
;
154
(June):
110658
. Available from:
4.
Centre for Disease Control and Prevention
.
Older Adults at greater risk of requiring hospitalization or dying if diagnosed with COVID-19
.
Centre for Disease Control and Prevention (CDC)
.
2020
. p.
1
9
.
5.
Brookman
S.
,
Cook
J.
,
Zucherman
M.
,
Broughton
S.
,
Harman
K.
,
Gupta
A.
Effect of the new SARS-CoV-2 variant B.1.1.7 on children and young people
.
Lancet Child Adolesc Heal [Internet].
2021
;
5
(
4
):
e9
10
. Available from:
6.
Marco Cascella; Michael Rajnik; Abdul Aleem; Scott C. Dulebohn; Raffaela
Di Napoli
.
Features, Evaluation, and Treatment of Coronavirus (COVID-19
). Available from: https://www.ncbi.nlm.nih.gov/books/NBK554776/
7.
Makarov
V.
,
Riabova
O.
,
Ekins
S.
,
Pluzhnikov
N.
,
Chepur
S.
Similarities and Differences Between Flu and COVID-19
. Vol.
78
,
Pathogens and Disease
.
2020
. p.
1
17
.
8.
Dyer
O.
Covid-19: Moderna and Pfizer vaccines prevent infections as well as symptoms, CDC study finds
.
BMJ.
2021
;
373
(April):888.
9.
Güner
R.
,
Hasanoğlu
İ
,
Aktaş
F.
Covid-19: Prevention and control measures in community
.
Turkish J Med Sci.
2020
;
50
(
SI-1
):
571
7
.
10.
Prabakaran
P.
,
Xiao
X.
,
Dimitrov
D.S.
A model of the ACE2 structure and function as a SARS-CoV receptor
.
Biochem Biophys Res Commun.
2004
;
314
(
1
):
235
41
.
11.
Huang
Y.
,
Yang
C.
,
Xu X
feng
,
Xu
W.
,
Liu S
wen
.
Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19
.
Acta Pharmacol Sin [Internet].
2020
;
41
(
9
):
1141
9
. Available from:
12.
Lan
J.
,
Ge
J.
,
Yu
J.
,
Shan
S.
,
Zhou
H.
,
Fan
S.
,
Zhang
Q.
,
Shi
X.
,
Wang
Q.
,
Zhang
L.
,
Wang
X.
Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
.
Nature [Internet].
2020
;
581
(
7807
):
215
20
. Available from:
13.
Bagdonaite
I.
,
Wandall
H.H.
Global aspects of viral glycosylation
.
Glycobiology.
2018
;
28
(
7
):
443
67
.
14.
Kobayashi
Y.
,
Suzuki
Y.
Compensatory evolution of net-charge in influenza A virus hemagglutinin
.
PLoS One.
2012
;
7
(
7
).
15.
Hernandez
E.R.
,
Hernandez-Zimbron
L.F.
,
Zuniga
N.M.
,
Leal-Garcia
J.J.
,
Hernandez
V.I.
,
Ucharima-Corona
L.E.
,
Campos
E.P.
,
Zenteno
E.
The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immunological Responses
.
Viral Immunol.
2021
;
34
(
3
):
165
73
.
16.
Hassanzadeh
K.
,
Perez Pena
H.
,
Dragotto
J.
,
Buccarello
L.
,
Iorio
F.
,
Pieraccini
S.
,
Sancini
G.
,
Feligioni
M.
Considerations around the SARS-CoV-2 Spike Protein with Particular Attention to COVID-19 Brain Infection and Neurological Symptoms
.
ACS Chem Neurosci.
2020
;
11
(
15
):
2361
9
.
17.
Kucherova
A.
,
Strango
S.
,
Sukenik
S.
,
Theillard
M.
Modeling the opening SARS-CoV-2 Spike: An investigation of its dynamic electro-geometric properties
.
bioRxiv.
2020
;
18.
Pawłowski
P.H.
Charged amino acids may promote coronavirus SARS-CoV-2 fusion with the host cell
.
AIMS Biophys.
2021
;
8
(
1
):
111
20
.
19.
Wang
Y.
,
Liu
M.
,
Gao
J.
Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions
.
Proc Natl Acad Sci U S A.
2020
;
117
(
25
):
13967
74
.
20.
Tahir Ul Qamar
M.
,
Saleem
S.
,
Ashfaq
U.A.
,
Bari
A.
,
Anwar
F.
,
Alqahtani
S.
Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: An immune-informatics study
.
J Transl Med [Internet].
2019
;
17
(
1
):
1
14
. Available from:
21.
Innocenzi
P.
,
Stagi
L.
Carbon-based antiviral nanomaterials: Graphene, C-dots, and fullerenes
.
A perspective. Chem Sci.
2020
;
11
(
26
):
6606
22
.
22.
Xia
S.
,
Liu
M.
,
Wang
C.
,
Xu
W.
,
Lan
Q.
,
Feng
S.
,
Qi
F.
,
Bao
L.
,
Du
L.
,
Liu
S.
,
Qin
C.
,
Sun
F.
,
Shi
Z.
,
Zhu
Y.
,
Jiang
S.
,
Lu
L.
Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion
.
Cell Res.
2020
;
30
(
4
):
343
55
.
23.
Zou
X.
,
Wu
J.
,
Gu
J.
,
Shen
L.
,
Mao
L.
Application of aptamers in virus detection and antiviral therapy
.
Front Microbiol.
2019
;
10
(JULY).
24.
Hofmann
H.
,
Hattermann
K.
,
Marzi
A.
,
Gramberg
T.
,
Geier
M.
,
Krumbiegel
M.
,
Kuate
S.
,
Überla
K.
,
Niedrig
M.
,
Pöhlmann
S. S.
Protein of Severe Acute Respiratory Syndrome-Associated Coronavirus Mediates Entry into Hepatoma Cell Lines and Is Targeted by Neutralizing Antibodies in Infected Patients
.
J Virol.
2004
;
78
(
12
):
6134
42
.
25.
Pandolfi
L.
,
Fossali
T.
,
Frangipane
V.
,
Bozzini
S.
,
Morosini
M.
,
D’Amato
M.
,
Lettieri
S.
,
Urtis
M.
,
Di Toro
A.
,
Saracino
L.
,
Percivalle
E.
,
Tomaselli
S.
,
Cavagna
L.
,
Cova
E.
,
Mojoli
F.
,
Bergomi
P.
,
Ottolina
D.
,
Lilleri
D.
,
Corsico
A.G.
,
Arbustini
E.
,
Colombo
R.
,
Meloni
F.
Broncho-alveolar inflammation in COVID-19 patients: A correlation with clinical outcome
.
BMC Pulm Med.
2020
;
1
10
.
26.
Simmons
G.
,
Gosalia
D.N.
,
Rennekamp
A.J.
,
Reeves
J.D.
,
Diamond
S.L.
,
Bates
P.
Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry
.
Proc Natl Acad Sci U S A.
2005
;
102
(
33
):
11876
81
.
27.
Mair
C.M.
,
Ludwig
K.
,
Herrmann
A.
,
Sieben
C.
Receptor binding and pH stability - How influenza A virus hemagglutinin affects host-specific virus infection
.
Biochim Biophys Acta - Biomembr [Internet].
2014
;
1838
(
4
):
1153
68
. Available from:
28.
Shang
Y.
,
Pan
C.
,
Yang
X.
,
Zhong
M.
,
Shang
X.
,
Wu
Z.
,
Yu
Z.
,
Zhang
W.
,
Zhong
Q.
,
Zheng
X.
,
Sang
L.
,
Jiang
L.
,
Zhang
J.
,
Xiong
W.
,
Liu
J.
,
Chen
D.
Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China
.
Ann Intensive Care [Internet].
2020
;
10
(
1
):
1
24
. Available from:
29.
Chhetri
S.
,
Khamis
F.
,
Pandak
N.
,
Al Khalili
H.
,
Said
E.
,
Petersen
E.
A fatal case of COVID-19 due to metabolic acidosis following dysregulate inflammatory response (cytokine storm
).
IDCases [Internet].
2020
;
21
:
e00829
. Available from:
30.
Tang
T.
,
Bidon
M.
,
Jaimes
J.A.
,
Whittaker
G.R.
,
Daniel
S.
Coronavirus membrane fusion mechanism offers a potential target for antiviral development
.
Antiviral Res [Internet].
2020
;
178
(April):
104792
. Available from:
31.
Elezagic
D.
,
Johannis
W.
,
Burst
V.
,
Klein
F.
,
Streichert
T.
Venous blood gas analysis in patients with COVID-19 symptoms in the early assessment of virus positivity
.
J Lab Med.
2021
;
45
(
1
):
27
30
.
32.
Mokhtari
T.
,
Hassani
F.
,
Ghaffari
N.
,
Ebrahimi
B.
,
Yarahmadi
A.
,
Hassanzadeh
G.
COVID-19 and multiorgan failure: A narrative review on potential mechanisms
.
J Mol Histol [Internet].
2020
;
51
(
6
):
613
28
. Available from:
33.
Zaim
S.
,
Chong
J.H.
,
Sankaranarayanan
V.
,
Harky
A.
COVID-19 and Multiorgan Response
.
Curr Probl Cardiol.
2020
;
45
(
8
):
100618
.
34.
Khan
M.A.
,
Khan
Z.A.
,
Charles
M.
,
Pratap
P.
,
Naeem
A.
,
Siddiqui
Z.
,
Naqvi
N.
,
Srivastava
S.
Cytokine storm and mucus hypersecretion in COVID-19: Review of mechanisms
.
J Inflamm Res.
2021
;
14
:
175
89
.
35.
Bollag
W.B.
,
Gonzales
J.N.
Phosphatidylglycerol and surfactant: A potential treatment for COVID-19?
Med Hypotheses.
2020
;
144
(September).
36.
Hagbom
M.
,
Nordgren
J.
,
Nybom
R.
,
Hedlund
K.O.
,
Wigzell
H.
,
Svensson
L.
Ionizing air affects influenza virus infectivity and prevents airborne-transmission
.
Sci Rep.
2015
;
5
:
1
10
.
37.
Jiang
S.Y.
,
Ma
A.
,
Ramachandran
S.
Negative air ions and their effects on human health and air quality improvement
.
Int J Mol Sci.
2018
;
19
(
10
).
38.
Hyun
J.
,
Lee
S.G.
,
Hwang
J.
Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus
.
J Aerosol Sci.
2017
;
107
:
31
40
.
39.
De Forni
D.
,
Poddesu
B.
,
Cugia
G.
,
Gallizia
G.
,
Licata M
La
,
Lisziewicz
J.
,
Chafouleas
J.G.
,
Lori
F.
Low ozone concentration and negative ions for rapid SARS-CoV-2 inactivation
.
bioRxiv.
2021
;
2
(March).
40.
Wardeh
A.
,
Conklin
J.
,
Ko
M.
Case reports of observed significant improvement in patients with ARDS due to COVID-19 and maximum ventilatory support after inhalation of sodium bicarbonate
.
J Clin Intensive Care Med.
2020
;
5
(
1
):
015
9
.
41.
Wang
B.
Adjusting extracellular pH to prevent entry of SARS-CoV-2 into human cells
.
Genome.
2021
Jun;
64
(
6
):
595
8
.
42.
Amirkhanian
J.D.
,
Taeusch
H.W.
Reversible and irreversible inactivation of preformed pulmonary surfactant surface films by changes in subphase constituents
.
Biochim Biophys Acta (BBA)/Lipids Lipid Metab.
1993
;
1165
(
3
):
321
6
.
43.
Gomez
CCS
,
Parazzi
PLF
,
Clinckspoor
K.J.
,
Mauch
R.M.
,
Pessine
FBT
,
Levy
C.E.
,
Peixoto
A.O.
,
Ribeiro
MÂGO
,
Ribeiro
A.F.
,
Conrad
D.
,
Quinton
P.M.
,
Marson
FAL
,
Ribeiro J.D.
Safety
,
Tolerability, and Effects of Sodium Bicarbonate Inhalation in Cystic Fibrosis
.
Clin Drug Investig.
2020
;
40
(
2
):
105
17
.
44.
Jones
R.
,
Wills
B.
,
Kang
C.
Chlorine gas: an evolving hazardous material threat and unconventional weapon
.
West J Emerg Med.
2010
;
11
(
2
):
151
6
.
This content is only available via PDF.
You do not currently have access to this content.