Agriculture is one of the important sectors in Indonesia. There are several commodities consumed by Indonesian citizens, one of them is shallots as a cooking spice and herbal medicine. Several problems occasionally arise in the shallots cultivation process; one of them is increasing plant pest organism’s attacks. However, the control process is still done conventionally. Therefore, it is necessary to build a system to diagnose diseases automatically. This paper proposes an information system for agriculture shallots based on machine learning using dempster Shafer. After collecting the data, dempster Shafer is applied to determine and define a reasonable level of confidence and a function to evaluate a possibility. Based on the experiment, the accuracyofmax belief for detection of shallots disease is 60%. By using several scenarios, the experimental result shows that dempster Shafer can detect shallot disease well. Furthermore, the algorithm can be implemented in web and mobile applications based to monitor the controlling process easier.

1.
D.
Novayana
,
R.
Sipayung dan
A.
Barus
, “
Respons Pertumbuhan dan Produksi Bawang Merah (Allium ascalonicum L.) Terhadap Jenis Mulsa dan Pupuk Kandang Ayam
”,
Jurnal Online Agroekoteknologi
, vol.
3
, No.
2
, pp.
446
457
,
2015
.
2.
Udiarto
,
B. K.
,
Setiawati
,
W.
, &
Suryaningsih
,
E.
(
2005
).
Pengenalan hama dan penyakit pada tanaman bawang merah dan pengendaliannya
.
3.
R. A.
Speir dan
,
M. A.
Haidekker
, “
Onion Postharvest Quality Assessment with X-Ray Computed Tomography – A Pilot Study
”,
IEEE Instrumentation & Measurement Magazine
, vol.
20
, No.
3
, pp.
15
19
,
2017
. DOI:
4.
J.
Adler
(
2017
), “
Diagnosa Penyakit dengan Gejala Demam pada ManusiaBerbasis Mobile: Knowledge Based System
”,
Komputika: Jurnal Sistem Komputer
, vol.
6
, No.
2, p51-58
,
2017
.
5.
I. H.
Santi
,
dan B.
Andari
, “
Sistem Pakar Untuk Mengidentifikasi Jenis Kulit Wajah dengan Metode Certainty Factor
”,
INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi
, vol.
3
, No.
2
, pp.
159
177
,
2019
.
6.
Berlilana
,
B.
,
Astuti
,
T.
,
Rifai
,
Z.
, &
Yunandi
,
A. B. I.
(
2018
).
Sistem Pakar Diagnosis Pecandu Narkoba Menggunakan Algoritma Forward Chaining
.
Konferensi Nasional SistemInformasi (KNSI) 2018.
7.
Widianto
,
F.
(
2018
).
Sistem Pakar Troubleshooting Jaringan Komputer Menggunakan Algoritma Backward Chaining
.
J-INTECH
,
6
(
02
),
214
217
.
8.
Aulady
,
F.
,
Gunawan
,
A.
,
&Ryansyah
,
M.
(
2019
).
Penerapan Algoritma Certainty Factor Untuk Sistem Pakar Diagnosis Urtikaria Pada Wanita Dewasa
.
Swabumi
,
7
(
1
),
90
98
.
9.
Muliadi
,
I.
Budiman
,
M. A.
Pratama dan
,
A.
Sofyan
, “
Fuzzy dan Dempster-Shafer Pada SistemPakarDiagnosaPenyakitTanamanCabai
”,
Kumpulan jurnaLIlmuKomputer (KLIK)
, Vol.
4
, No.
2
, pp.
209
222
,
2017
.
10.
I. L. K.
Panjaitan
,
E.
Panggabean dan Sulindawaty
, “
Analisis Perbandingan Metode Dempster Shafer DenganMetode Certainty Factor Untuk Mendiagnosa Penyakit Stroke
”,
Journal Of Informatic Pelita Nusantara
, vol.
3
, No.
1
, pp.
69
74
,
2018
.
11.
C. T.
Pasaribu
,
N.
Hidayat dan
R. C.
Wihandika
, “
Pemodelan Sistem Pakar Diagnosa Penyakit pada Tanaman Tembakau Virginia dengan Metode Dempster-Shafer
”,
Jurnal PTIIK
, vol.
2
No.
5
, pp.
2092
2094
,
2018
.
12.
A.
Wahyudi
,
R. Efendi dan Y.
Setiawan
, “
Perancangan Sistem Pakar Untuk Diagnosa Penyakit Menular Pada Balita Menggunakan Metode Dempster-Shafer
”,
Rekursif Jurnal Informatika
, vol.
6,
No.
1
, pp.
80
87
,
2018
.
This content is only available via PDF.
You do not currently have access to this content.