Chenderoh Reservoir is a hydroelectric dam commissioned in 1930. Changes at the margin and littoral zone of the reservoir due to shoreline sedimentation and the growth of macrophytes have not been studied well. Therefore, a study on the spatial distribution of macrophytes at Chenderoh Reservoir was carried out to determine the diversity and distribution of macrophyte species based on reservoir morphometry. Field samplings were conducted at 18 sampling points covering the embayments and main river channel using echo sounding, line transect and quadrat methods. The results showed that the macrophyte species were distributed according to the slope of the reservoir. Thirty-four macrophyte species from four different types, emergent, floating-leaved, submerged and free-floating, were recorded. The morphometric characteristic, particularly water depth, resulted in the zoning of macrophytes according to their types, determined by the availability of light and hydrological attributes. This study indicated that the macrophytes distribution at all sampling points in Chenderoh Reservoir was determined by morphometric characteristics influenced by seasonality and water level fluctuations of the dam operation. Hence, the bathymetric study is important to identify reservoirs morphometry and helps in mapping the vegetation for better management by the authority.

1.
A. B.
Ali
,
Chenderoh Reservoir, Malaysia: The conservation and wise use of fish biodiversity in a small flow through tropical reservoir
,
Lakes & Reservoirs: Research & Management
,
2
(
1,2
),
17
30
(
1996
)
2.
TNBR (Tenaga Nasional Berhad Research)
,
Lake Brief; Chenderoh Lake, Perak
,
TNB Research Sdn. Bhd In Collaboration with Tasik Chini Research Centre UKM (UKM-PPTC), Kuala Lumpur
, (
2013
)
3.
K. H.
Britton-Simmons
,
A. L.
Rhoades
,
R. E.
Pacunski
,
A. W.
Galloway
,
A. T.
Lowe
,
E. A.
Sosik
,
M. N.
Dethier
,
D. O.
Duggins
,
Habitat and bathymetry influence the landscape, scale distribution and abundance of drift macrophytes and associated invertebrates
,
Limnology and Oceanography
,
57
(
1
),
176
184
(
2012
)
4.
S. K.
Jha
,
G.
Mariethoz
,
B. F. J.
Kelly
,
Bathymetry fusion using multiple-point geostatistics: Novelty and challenges in representing non-stationary bed forms
,
Environmental Modelling & Software
,
50
,
66
76
(
2013
)
5.
B.
Schneider
,
E. R.
Cunha
,
M.
Marchese
,
S. M.
Thomaz
,
Associations between macrophyte life forms and environmental and morphometric factors in a large sub-tropical floodplain
,
Frontiers in Plant Science
,
9
,
195
(
2018
)
6.
I.
Ridwansyah
,
M. H.
Hamid
,
S. N.
Ismail
,
N. A.
Omar
,
l.
Subehi
,
H.
Wibowo
,
Morphometry of Temengor Reservoir, Perak
,
School of Biological Sciences, Universiti Sains Malaysia
,
10
12
(
2016
)
7.
L.
Hakanson
,
The Importance of lake morphometry and catchment characteristics in limnology – ranking based on statistical analyses
,
Hydrobiologia
,
541, 117
137
(
2005
)
8.
K.
Hatanaka
,
M.
Toda
,
M.
Wada
,
Data analysis of a low-cost bathymetry system using fishing echo sounders
,
Oceans
,
1
6
(
2007
)
9.
R. G.
Wetzel
,
Limnology
,
Saunders College Publishing Philadephia New York Chicago
(
1983
)
10.
J. E.
Titus
,
Submersed macrophyte vegetation and distribution within lakes: line transect sampling
,
Lake and Reservoir Management
,
7
(
2
),
155
164
(
1993
)
11.
J. D.
Madsen
,
Point intercept and line intercept methods for aquatic plant management (No. WES-MI-02)
,
Army Engineer Waterways Experiment Station Vicksburg, Mississippi
, (
1999
)
12.
B. J.
Sidik
,
S. O.
Bandeira
,
N. A.
Milchakova
,
Methods to measure macroalgal biomass and abundance in seagrass meadows
,
Global Seagrass Research Methods
,
223
232
(
2001
)
13.
L.
Kaufman
,
P. J.
Rousseeuw
,
Finding groups in data: an introduction to cluster analysis
, (
John Wiley & Sons
.
New Jersey
(
2009
)
14.
O. F. R.
vanTongeren
,
R. H. G.
Jongman
,
C. J. F.
terBraak
,
Data analysis in community and landscape ecology
, (
Cambridge University Press Cambridge
,
1995
)
15.
C. J.
Krebs
,
Ecological methodology
. 2nd Ed (
Benjamin Cummings
,
1999
)
16.
S.
Joanna
,
D.
Urban
,
R. B.
Monika
,
Phenomenon of Macrophyte Differentiation in a Small Lake
,
Sains Malaysiana
,
49
(
6
),
1209
1222
(
2020
)
17.
I.
Roznere
,
J. E.
Titus
,
Zonation of emergent freshwater macrophytes: Responses to small-scale variation in water depth 1
,
The Journal of the Torrey Botanical Society
,
144
(
3
),
254
266
(
2017
)
18.
T. L.
Lauridsen
,
T.
Mønster
,
K.
Raundrup
,
J.
Nymand
,
B.
Olesen
,
Macrophyte performance in a low arctic lake: effects of temperature, light and nutrients on growth and depth distribution
,
Aquatic Sciences
,
82
(
1
),
1
14
(
2020
)
19.
J. R.
Stocks
,
M. P.
Rodgers
,
J. B.
Pera
,
D. M.
Gilligan
,
Monitoring aquatic plants: An evaluation of hydroacoustic, on-site digitising and airborne remote sensing techniques
,
Knowledge & Management of Aquatic Ecosystems
, (
420
),
27
(
2019
)
20.
R. S. T.
Moura
,
G. G.
Henry-Silva
,
Is there a zonation pattern in aquatic macrophytes communities in the aquatic environments of the Brazilian semiarid?
,
Brazilian Journal of Botany
,
41
(
3
),
665
674
(
2018
)
21.
M.
Akasaka
,
N.
Takamura
,
H.
Mitsuhashi
,
Y.
Kadono
,
Effects of land use on aquatic macrophyte diversity and water quality of ponds
,
Freshwater Biology
,
55
(
4
),
909
922
(
2010
)
22.
J.
Alahuhta
,
Geographic patterns of lake macrophyte communities and species richness at regional scale
,
Journal of Vegetation Science
,
26
(
3
),
564
575
(
2015
)
23.
S. D.
Shivers
,
S. W.
Golladay
,
M. N.
Waters
,
S. B.
Wilde
,
A. P.
Covich
,
Rivers to reservoirs: hydrological drivers control reservoir function by affecting the abundance of submerged and floating macrophytes
,
Hydrobiologia
,
815
(
1
),
21
35
(
2018
)
24.
L.
Boyd
,
Investigating the effects of water level on depth zones for macrophyte distribution and ecological index performance in coastal marshes of Georgian Bay, Lake Huron (Master of Science dissertation)
, (
McMaster University Canada
,
2017
)
25.
C.
Vis
,
C.
Hudon
,
R.
Carignan
,
An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over large spatial scales
,
Aquatic Botany
,
77
(
3
),
187
201
(
2003
)
26.
R. de Assis
Murillo
,
D. C.
Alves
,
R. dos Santos
Machado
,
M. J.
Silveira
,
K. F.
Rodrigues
,
S. M.
Thomaz
,
Responses of two macrophytes of the genus Polygonum to water level fluctuations and interspecific competition
,
Aquatic Botany
,
157
,
10
16
(
2019
)
27.
H. J.
Biggs
,
V. I.
Nikora
,
C. N.
Gibbins
,
S.
Fraser
,
D. R.
Green
,
K.
Papadopoulos
,
D. M.
Hicks
,
Coupling Unmanned Aerial Vehicle (UAV) and hydraulic surveys to study the geometry and spatial distribution of aquatic macrophytes
,
Journal of Ecohydraulics
,
3
(
1
),
45
58
(
2018
)
28.
J. R.
Helliwell
,
C. J.
Sturrock
,
S.
Mairhofer
,
J.
Craigon
,
R. W.
Ashton
,
A. J.
Miller
,
W. R.
Whalley
,
S. J.
Mooney
,
The Emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface
,
Scientific Reports
,
7
(
1
),
1
10
(
2017
)
29.
C.
Xie
,
C.
Zhou
,
S.
Long
,
W.
Wang
,
Q.
Xia
,
S.
Pingcuo
,
Z.
Xu
.
Photosynthetic characteristics differ between emergent and floating-leaved macrophytes
,
Acta Ecologica Sinica
, (
7
),
26
(
2018
)
30.
M.
Greenway
,
Macrophyte zonation and sustainability in stormwater wetlands in subtropical eastern Australia: design and function
,
INTECOL, Orlando
(
2012
)
31.
E.
Pieczytiska
,
Lentic aquatic-terrestrial ecotones: their structure, function and importance
,
The Ecology and Management of Aquatic-Terrestrial Ecotones MAB-Series
,
4
,
103
140
(
1990
)
32.
P. A.
Chambers
,
Nearshore occurrence of submersed aquatic macrophytes in relation to wave action
,
Canadian Journal of Fisheries and Aquatic Sciences
,
44
(
9
),
1666
1669
(
1987
)
33.
B.
Ye
,
Z.
Chu
,
A.
Wu
,
Z.
Hou
,
S.
Wang
,
Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake
,
PloS One
,
13
(
3
),
e0193176
(
2018
)
34.
Á.
Vári
,
V. R.
Tóth
,
Quantifying macrophyte colonisation strategies—A field experiment in a shallow lake (Lake Balaton, Hungary)
,
Aquatic Botany
,
136
,
56
60
(
2017
)
35.
K.
Kuntz
,
P.
Heidbüchel
,
A.
Hussner
,
Effects of water nutrients on regeneration capacity of submerged aquatic plant fragments
,
Annalesde Limnologie-International Journal of Limnology
,
50
(
2
),
155
162
(
2014
)
36.
J.
Zhou
,
Z.
Wu
,
D.
Yu
,
Y.
Pang
,
H.
Cai
,
Y
Liu
,
Toxicity of linear alkylbenzene sulfonate to aquatic plant Potamogeton perfoliatus
L, Environmental Science and Pollution Research
,
25
(
32
),
32303
32311
(
2018
)
37.
J.
Alahuhta
,
J.
Heino
,
Spatialextent, regional specificity and meta community structuring in lake macrophytes
,
Journal of Biogeography
,
40
(
8
),
1572
1582
(
2013
)
38.
M.
Prajapati
,
J. J.
van Bruggen
,
T.
Dalu
,
R.
Malla
,
Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for wastewater treatment
,
Applied Water Science
,
7
(
8
),
4801
4809
(
2017
)
39.
M.
Špoljar
,
C.
Zhang
,
T.
Dražina
,
G.
Zhao
,
J.
Lajtner
,
G.
Radonić
,
Development of submerged macrophyte and epiphyton in a flow-through system: Assessment and modeling predictions in interconnected reservoirs
,
Ecological Indicators
,
75
,
145
154
(
2017
)
40.
D.
Son
,
H.
Cho
,
E. J.
Lee
,
Determining factors for the occurrence and richness of submerged macrophytes in major Korean rivers
,
Aquatic Botany
,
150
,
82
88
(
2018
)
41.
S. C.
Maberly
,
B.
Gontero
,
Trade-off sand synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environments
,
The Leaf: A Platform For Performing Photosynthesis
,
307
343
(
2018
)
42.
Q.
Wu
,
GIS and Remote Sensing Applications in Wetland Mapping and Monitoring
. In:
Huang
,
B.
(Ed.),
Comprehensive Geographic Information Systems
,
2
,
140
157
(
Elsevier Oxford
)
This content is only available via PDF.
You do not currently have access to this content.