In this study, the unidirectional carbon fiber-reinforced polymer (CFRP) composite laminates under the Mode I loading are characterized using Cohesive Zone Model (CZM). A bilinear traction-displacement softening law is assumed for the interface behavior. The required interlaminar properties and CZM model parameters are characterized through an experimental-finite element (FE) approach. These parameters are the critical Mode I energy released rate, GIC, tensile strength, T and tensile penalty stiffness, kn. For this purpose, a unidirectional, 32-ply ([0]32) double-cantilever beam specimen is tested to fracture. The global load-displacement response of the specimen to the interface crack extension is recorded. The result establishes the Mode I critical energy release rate, GIC = 0.31 N/mm. The validated finite element (FE) simulation of the test is then employed to extract the CZM model parameters corresponding to the observed interlaminar damage initiation event. The FE-calculated maximum normal stress at the interface crack front is taken to represent the tensile strength of the interface, T=62.5 MPa. The corresponding slope of the stress-relative opening displacement of this critical material point indicates the penalty stiffness of the interface, kn = 0.98×106 N/mm3. With the established interfacial properties, the CZM could then be employed in simulating the deformation and damage process of the interfaces in FRP composite laminates under Mode I loading.

1.
S. S. R.
Koloor
,
M. R.
Khosravani
,
R. I. R.
Hamzah
, and
M. N.
Tamin
, “
FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes
,”
International Journal of Mechanical Sciences
, vol.
141
,
223
235
(
2018
).
2.
S. S. R.
Koloor
and
M. N.
Tamin
, “
Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials
,”
Composite Structures
, vol.
204
,
594
606
(
2018
).
3.
Y.
Gong
,
L.
Zhao
,
J.
Zhang
, and
N.
Hu
, “
A novel model for determining the fatigue delamination resistance in composite laminates from a viewpoint of energy
,”
Composites Science and Technology
, vol.
167
,
489
496
(
2018
).
4.
J.-W.
Simon
,
D.
Höwer
,
B.
Stier
, and
S.
Reese
, “
Meso-mechanically motivated modeling of layered fiber reinforced composites accounting for delamination
,”
Composite Structures
, vol.
122
,
477
487
(
2015
).
5.
L.
Zubillaga
,
A.
Turon
,
J.
Renart
,
J.
Costa
, and
P.
Linde
, “
An experimental study on matrix crack induced delamination in composite laminates
,”
Composite Structures
, vol.
127
,
10
17
(
2015
).
6.
X.
Li
and
J.
Chen
, “
A highly efficient prediction of delamination migration in laminated composites using the extended cohesive damage model
,”
Composite Structures
, vol.
160
,
712
721
(
2017
).
7.
B. D.
Davidson
and
R. A.
Schapery
, “
Effect of Finite Width on Deflection and Energy Release Rate of an Orthotropic Double Cantilever Specimen
,”
Journal of Composite Materials
, vol.
22
, no.
7
,
640
656
(
1988
).
8.
M. R.
Wisnom
, “
Modelling discrete failures in composites with interface elements
,”
Composites Part A: Applied Science and Manufacturing
, vol.
41
, no.
7
,
795
805
(
2010
).
9.
J.
Jokinen
,
M.
Kanerva
,
M.
Wallin
, and
O.
Saarela
, “
The simulation of a double cantilever beam test using the virtual crack closure technique with the cohesive zone modelling
,”
International Journal of Adhesion and Adhesives
, vol.
88
,
50
58
(
2019
).
10.
X.
Huo
,
Q.
Luo
,
Q.
Li
, and
G.
Sun
, “
Measurement of fracture parameters based upon digital image correlation and virtual crack closure techniques
,”
Composites Part B: Engineering
, vol.
224
,
109157
(
2021
).
11.
M. Z.
Sadeghi
 et al., “
Failure load prediction of adhesively bonded single lap joints by using various FEM techniques
,”
International Journal of Adhesion and Adhesives
, vol.
97
,
102493
(
2020
).
12.
A.
Hillerborg
,
M.
Modéer
, and
P.-E.
Petersson
, “
Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
,”
Cement and Concrete Research
, vol.
6
, no.
6
,
773
781
(
1976
).
13.
D.
Höwer
,
B. A.
Lerch
,
B. A.
Bednarcyk
,
E. J.
Pineda
,
S.
Reese
, and
J.-W.
Simon
, “
Cohesive zone modeling for mode I facesheet to core delamination of sandwich panels accounting for fiber bridging
,”
Composite Structures
, vol.
183
,
568
581
(
2018
).
14.
S.
Rezaei
,
S.
Wulfinghoff
, and
S.
Reese
, “
Prediction of fracture and damage in micro/nano coating systems using cohesive zone elements
,”
International Journal of Solids and Structures
, vol.
121
,
62
74
(
2017
).
15.
P. P.
Camanho
,
C. G.
Davila
, and
M. F.
de Moura
, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
Journal of Composite Materials
, vol.
37
, no.
16
,
1415
1438
(
2003
).
16.
R. D. S. G.
Campilho
,
M. D.
Banea
,
J. A. B. P.
Neto
, and
L. F. M.
da Silva
, “
Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer
,”
International Journal of Adhesion and Adhesives
, vol.
44
,
48
56
(
2013
).
17.
M.
Kenane
and
M. L.
Benzeggagh
, “
Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading
,”
Composites Science and Technology
, vol.
57
, no.
5
,
597
605
(
1997
).
18.
S.
Koloor
,
M.
Ayatollahi
, and
M.
Tamin
, “
Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces
,”
Journal of Reinforced Plastics and Composites
, vol.
36
, no.
11
,
832
849
(
2017
).
19.
ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM International, West Conshohocken, PA, 2013
.,”
ASTM International.
This content is only available via PDF.
You do not currently have access to this content.