Issues regarding energy efficiency issued by IMO EEDI (Energy Efficiency Design Index) encourage researchers to study how to improve ship resistance. Interceptor is one of the performance-improving devices on a planing hull. Interceptor is a vertical plate symmetrically placed on the stern. In this study, the interceptor will be applied to planing hull to understand its effect on drag, trim, and heave. Computational Fluid Dynamics (CFD) will be used in this study, with Navier Stokes equations use DFBI (Dynamic Fluid Body Interaction) 2 DoF motions. The interceptor will be placed in varied positions and angles to observe a ship’s characteristics in a calm water condition. The result shows that the interceptor position tends to cause more drag for the ship. That is caused by higher momentum force, followed by higher trim angle, leading to WSA increment. Interceptor installed 4 meters behind midship in 80° angle shows the lowest resistance compared to other interceptor variations used in the present study.

1.
Alfonsi
,
G.
(
2009
).
Reynolds-averaged Navier-Stokes equations for turbulence modeling
.
Applied Mechanics Reviews
,
62
(
4
),
1
20
.
2.
Avci
,
A. G.
, &
Barlas
,
B.
(
2018
).
An Experimental and Numerical Study of a High Speed Planing Craft with Full-Scale Validation
.
Journal of Marine Science and Technology (Taiwan)
,
26
(
5
),
617
628
.
3.
Day
,
A. H.
, &
Cooper
,
C.
(
2011
).
An Experimental Study of Interceptors for Drag Reduction on High-Performance Sailing Yachts
.
Ocean Engineering
,
38
(
8–9
),
983
994
.
4.
Fridsma
,
G.
(
1969
).
A Systematic Study of The Rough-water Performance of Planning Boat
.
5.
Fridsma
,
G.
(
1971
).
A Systematic Study of the Rough-Water Performance of Planing Boats
.
Irregular Wave.
6.
Ghassemi
,
H.
,
Mansouri
,
M.
, &
Zaferanlouei
,
S.
(
2011
).
Interceptor Hydrodynamic Analysis for Handling Trim Control Problems in the High-Speed Crafts
.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
,
225
(
11
),
2597
2618
.
7.
ITTC
. (
2011
).
Practical Guidelines for Ship CFD Applications
.
ITTC – Recommended Procedures and Guidelines ITTC
,
1
8
.
8.
ITTC
. (
2014
).
Practical Guidelines for Ship CFD Applications ITTC
.
Specialist Committee on CFD in Marine Hydrodynamics of the 27th ITTC.
9.
Karimi
,
M. H.
(
2006
).
Hydrodynamic Quality Improvement Techniques For High Speed Planning Crafts
.
Proceeding of 7th Conference on Marine Industries
.
10.
Karimi
,
M. H.
,
Seif
,
M. S.
, &
Abbaspoor
,
M.
(
2013
).
An Experimental Study of Interceptor’s effectiveness on hydrodynamic Performance of High-Speed Planing Crafts
.
Polish Maritime Research
,
20
(
2
),
21
29
.
11.
Launder
,
B. E.
, &
Spalding
,
D. B.
(
1974
).
The Numerical Computation of Turbulent Flows.
3
(
2
),
269
289
.
12.
Lotfi
,
P.
,
Ashrafizaadeh
,
M.
, &
Esfahan
,
R. K.
(
2015
).
Numerical investigation of a stepped planing hull in calm water
.
Ocean Engineering
,
94
,
103
110
.
13.
Mansoori
,
M.
, &
Fernandes
,
A. C.
(
2017a
).
Hydrodynamics of the Interceptor Analysis Via Both Ultrareduced Model Test and Dynamic Computational Fluid Dynamics Simulation
.
Journal of Offshore Mechanics and Arctic Engineering
,
139
(
2
),
1
15
.
14.
Mansoori
,
M.
, &
Fernandes
,
A. C.
(
2017b
).
Interceptor and Trim tab Combination to Prevent Interceptor’s Unfit Effects
.
Ocean Engineering
,
134
(February),
140
156
.
15.
Marshall
,
R.
(
2002
).
All About Powerboats: Understanding Design and Performance
.
McGraw Hill Professional
.
16.
Rijkens
,
A. A. K.
,
Cleijsen
,
H. M. A.
, &
Keuning
,
J. A.
(
2013
).
On the Hydrodynamic Performance of an Improved Motion Control Device for Fast Ships
.
FAST 2013 - 12th International Conference on Fast Sea Transportation
,
December 2013
.
17.
Samuel
,
Iqbal
,
M.
, &
Utama
,
I. K. A. P.
(
2015
).
An investigation into the resistance components of converting a traditional monohull fishing vessel into catamaran form
.
International Journal of Technology
,
6
(
3
),
432
441
.
18.
Samuel
,
S.
,
Jokosisworo
,
S.
,
Iqbal
,
M.
,
Manik
,
P.
, &
Rindo
,
G.
(
2020
).
Verifikasi Deep-V Planing Hull Menggunakan Finite Volume Method Pada Kondisi Air Tenang
.
TEKNIK
,
41
(
2
),
126
133
.
19.
Samuel
,
S.
,
Trimulyono
,
A.
, &
Santosa
,
A. W. B.
(
2019
).
Simulasi CFD pada Kapal Planing Hull
.
Kapal: Jurnal Ilmu Pengetahuan Dan Teknologi Kelautan
,
16
(
3
),
123
128
.
20.
Savitsky
,
D.
(
1964a
).
Hydrodynamic Design of Planing Hulls
(pp.
71
95
).
Marine Technology and SNAME.
21.
Savitsky
,
D.
(
1964b
).
Hydrodynamic Design of Planing Hulls
.
Marine Technology
,
1
(
1
),
71
95
.
22.
Savitsky
,
D.
, &
Brown
,
P.
ward
. (
1976
).
Procedures for Hydrodynamic Evaluation of Planing Hulls in Smooth and Rough Water
. (pp.
381
400
).
Marine Technology.
23.
Seok
,
W.
,
Park
,
S. Y.
, &
Rhee
,
S. H.
(
2020
).
An experimental Study on the Stern Bottom Pressure Distribution of a High-Speed Planing Vessel with and without Interceptors
.
International Journal of Naval Architecture and Ocean Engineering
,
12
,
691
698
.
24.
Tsai
,
J. F.
, &
Hwang
,
J. L.
(
2004
).
Study on the Compound Effects of Interceptor with Stern Flap for Two Fast Monohulls
.
Ocean ’04 - MTS/IEEE Techno-Ocean ’04: Bridges across the Oceans - Conference Proceedings
,
2
(
1
),
1023
1028
.
This content is only available via PDF.
You do not currently have access to this content.