The current work presents a partitioned tightly coupled fluid-structure interaction (FSI) simulation. Fluid-structure interaction is an important aspect, accurate prediction method for ship dynamics is a significant prerequisite for structural design and an essential consideration for strength evaluation. In a seaway, the ship structure flexes constantly. It is subjected to neither static nor quasi-static loads. As a result, a dynamic interaction between the hull reactions and the activities of the surrounding fluid, known as fluid-structure interaction, is always present. This study has several conclusions, including the FSI effect associated with the hydrodynamic recovery force may have the most significant impact on the structural dynamic response. The major influence of restoring forces affects both structural damages and absorbed energy. Because of the effect of hydrodynamic restoring forces, multiphysics simulations for typical passenger ship disaster scenarios showed that appropriate FSI modeling may be necessary for either collision or grounding. Then, the fluid motion was identified on the dynamic behavior of the struck plate of a fluid tank, subjected to wedge impacts.

1.
J. C.
Jo
, Pressure Vessels and Piping Systems - Fluid-Structure Interaction (
Encyclopedia of Life Support Systems (EOLSS)
,
Paris
,
2004
), pp.
1
12
.
2.
C. J.
Jesse
,
J. C.
Kennedy
and
G. L.
Solbrekken
,
Fluid-Structure Interaction (FSI) Modeling of Thin Plates
,
16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(
NURETH-16
,
Chicago
,
2015
), pp.
1
14
.
3.
Y. S.
Wu
,
M. S.
Zou
,
C.
Tian
,
C.
Sima
,
L. B.
Qi
,
J.
Ding
,
Z. W.
Li
and
Y.
Lu
,
J. Hydrodyn. Ser. B.
28
,
923
936
(
2016
).
4.
S.
Ma
and
H.
Mahfuz
,
Ocean Eng.
52
,
52
59
(
2012
).
5.
K.
Iijima
,
T.
Yao
and
T.
Moan
.
Mar. Struct.
21
,
420
445
(
2008
).
6.
L.
Zhu
,
Q.
Liang
,
M.
Chen
and
S.
Zhang
,
Mar. Struct.
70
,
102698
(
2020
).
7.
K.
Tabri
,
J.
Matusiak
and
P.
Varsta
,
Ocean Eng.
36
,
1366
1376
(
2009
).
8.
Q.
Liang
,
L.
Zhu
,
S.
Zhang
and
M.
Chen
,
Numerical modeling of dynamic response of water tank in collision
, (
OMAE-36
,
Trondheim
,
2017
), pp.
1
6
.
9.
S. J.
Kim
,
M.
Kõrgersaar
,
N.
Ahmadi
,
G.
Taimuri
,
P.
Kujala
and
S.
Hirdaris
,
Mar. Struct.
75
,
102875
, (
2021
).
10.
M.
Song
,
J.
Ma
and
Y.
Huang
,
Mar. Struct.
55
,
121
136
(
2017
).
11.
S. J.
Kim
,
Y. K.
Ko
,
J. K.
Paik
and
S. A. M.
Youssef
,
Collision Risk Assessment of a VLCC Class Tanker
(
SNAME Maritime Convention
,
Texas
,
2017
).
12.
A. R.
Prabowo
,
T.
Putranto
and
J. M.
Sohn
,
J. Mar. Sci. Eng.
7
,
270
(
2019
).
13.
A. R.
Prabowo
,
T.
Muttaqie
,
J. M.
Sohn
and
D. M.
Bae
,
J. Braz. Soc. Mech. Sci. Eng.
40
,
248
(
2018
).
14.
M.
Abebe
,
Y.
Noh
,
C.
Seo
,
D.
Kim
and
I.
Lee
,
Appl. Ocean Res.
113
,
102735
(
2021
).
15.
A. R.
Prabowo
,
F. B.
Laksono
and
J. M.
Sohn
,
Curved Layered Struct.
7
,
17
28
(
2020
).
16.
A. R.
Prabowo
,
T.
Muttaqie
,
J. M.
Sohn
and
B. I. R.
Harsritanto
,
Theo. Appl. Mech. Letters
9
,
50
59
(
2019
).
17.
X.
Xin
,
K.
Liu
,
Z.
Yang
,
J.
Zhang
and
X.
Wu
,
Reliability Eng. Sys. Safe.
215
,
107772
(
2021
).
18.
K.
Hughes
,
R.
Vignjevic
,
J.
Campbell
,
T. D.
Vuyst
,
N.
Djordjevic
and
L.
Papagiannis
,
Int. J. Impact Eng.
61
,
48
63
(
2013
).
19.
M.
Song
,
E.
Kim
,
J.
Amdahl
,
J.
Ma
and
Y.
Huang
,
Mar. Struct.
49
,
58
75
(
2016
).
20.
J.
Yan
,
A.
Korobenko
,
X.
Deng
and
Y.
Bazilevs
,
Comp. Fluids
141
,
155
174
(
2016
)
21.
A.
Calderer
,
X.
Guo
,
L.
Shen
and
F.
Sotiropoulos
,
J. Comp. Phy.
355
,
144
175
(
2018
).
22.
P.
Ni
,
J.
Li
,
H.
Hao
,
Y.
Xia
and
X.
Du
,
Eng. Struct.
198
,
109507
(
2019
)
23.
L.
Huang
,
K.
Ren
,
M.
Li
,
Ž.
Tucković
,
P.
Cardiff
and
G.
Thomas
,
Ocean Eng.
182
,
102
111
(
2019
).
24.
D.
Caraeni
,
V.
Casseau
and
W. G.
Habashi
,
Finite Elem. Analy. Des.
177
,
103425
(
2020
).
25.
Z.
Tian
,
F.
Liu
,
L.
Zhou
and
C.
Yuan
,
Ocean Eng.
195
,
106598
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.